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Abstract—Audio-based receiver localization in indoor environ-
ments has multiple applications including indoor navigation, loca-
tion tagging, and tracking. Public places like shopping malls and
consumer stores often have loudspeakers installed to play music
for public entertainment. Similarly, office spaces may have sound
conditioning speakers installed to soften other environmental
noises. We discuss an approach to leverage this infrastructure
to perform audio-based localization of devices requesting local-
ization in such environments, by playing barely audible controlled
sounds from multiple speakers at known positions. Our approach
can be used to localize devices such as smart-phones, tablets
and laptops to sub-meter accuracy. The user does not need
to carry any specialized hardware. Unlike acoustic approaches
which use high-energy ultrasound waves, the use of barely
audible (low energy) signals in our approach poses very different
challenges. We discuss these challenges, how we addressed those,
and experimental results on two prototypical implementations:
a request-play-record localizer, and a continuous tracker. We
evaluated our approach in a real world meeting room and report
promising initial results with localization accuracy within half a
meter 94% of the time. The system has been deployed in multiple
zones of our office building and is now part of a location service
in constant operation in our lab.

I. INTRODUCTION

Indoor localization has several applications such as indoor
navigation, location tagging, and tracking. Due to the obstruc-
tion of direct line-of-sight to satellites in indoor environments,
Global Positioning System (GPS) does not work well indoors.
Researchers have actively explored alternative mechanisms
for indoor localization. Many systems have been proposed
that utilize different modalities like wi-fi, RFID or camera-
networks. These systems often employ equipment which is
expensive or deployed solely for the purpose of localization.
Many of these systems (like Wi-Fi and RFID-based) fail to
achieve a sub-meter accuracy which is often required for
applications like indoor navigation. Some systems have the
potential to infringe upon user privacy (such as camera-based
tracking systems or systems using microphones deployed in
the environment).

In developing our approach to indoor navigation, we have
focused on several guiding principles. We want accuracy on
the order of a meter or better. The setup should not require
any dedicated expensive equipment to be installed in the en-
vironment. Users of our system should not require specialized
gadgets or procedures; an app running on a smartphone should
be enough. Moreover, our system should respect user privacy
and should not require potentially invasive microphones or
cameras to be installed in the environment.

Fig. 1. GUI for the tracking server. The top panel shows cross-correlations (in
black) of the recorded signal with 6 reference signals played from speakers,
with estimated delays indicated as small green bars. The tall green line
indicates the estimated time when the signals were played. The bottom panel
depicts a map of the room, showing speaker positions as red circles. The green
dot indicates estimated microphone position, and green lines show which 4
speakers out of the 6 were used for the estimate.

Large indoor locations such as malls, consumer stores and
museums are usually equipped with loudspeakers for public
address, or to play music for customer entertainment. Indoor
workspaces often include sound conditioning speakers to play
noise or ambient sounds to soften other environmental noise.
With little modification, these systems can be leveraged to
provide additional functionality to allow users to determine
their location. This work introduces an approach that uses
controlled ambient sounds played through multiple speakers,
which can be recorded by a smart-device (smart-phone, tablet
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or laptop). The recorded audio can then be used to determine
a user’s location.

The audio played from each speaker contains a low energy
pseudo-random white noise sequence, possibly mixed with
music or other sounds for human consumption. The audio is
played using any multi-track audio system, such as commonly
available 5.1 or 7.1 surround systems, so that the source tracks
are known to be synchronized with each other. No a priori
synchronization between the source and recording device is
required. The recorded audio is analyzed to estimate the arrival
times of the signals from each speaker. These estimates are
then used to determine both the microphone position, and the
synchronization between speakers and microphone. Our con-
tributions lie in proposing an audio-based receiver localization
system that uses low-energy (barely audible) audio signals
for indoor localization. We use windowed cross-correlation
of long duration signals to improve signal-to-noise ratio and
to account for mismatched speeds between the playback and
receiver system clocks, i.e. the clock drift.

To demonstrate our approach, we have developed a system
which provides localization services in three zones of our
research center - the main meeting room, the kitchen area,
and a lab area. A user interface to the localization system is
shown in Figure 1. It may be run as a standalone client on a
laptop, or as a server back end, providing estimates to Android
clients as shown in Figure 2.

II. RELATED WORK

Many systems attempt to address the problem of indoor
localization using different modalities. Systems using wifi [1],
[2] report a median localization error of more than a meter, and
typically involve extensive setup and tuning. Localization error
for systems based on GSM [3], IR [4] and RFID [5] also fall
in similar range. In order to attain sub-meter accuracy, optical
and acoustic based systems have to be used.

Localization systems can conceptually be classified into
source localization systems and receiver localization systems.
Camera-based (optical) systems [6], [7] and most acoustic sys-
tems using microphones [8], [9], [10], [11], [12] try to localize
a source by sensing its signal through multiple receivers with
known positions. Such systems can potentially violate user
privacy by recording their video or voices without explicit
approval. Another undesirable property of audio-based source
localization systems is that the device to be localized needs to
continuously make audible sounds, which may be a cause of
irritation to the user [12].

On the other hand, in receiver localization systems, a
receiver senses the ambient signal which is then processed to
determine the receiver’s location. The ambient signal can ei-
ther be uncontrolled or controlled. Systems using uncontrolled
signals either employ multiple known receivers [13] as part of
the system (potentially violating privacy) or use collaborative
sensing. Collaborative sensing [14] requires multiple unknown
receivers that try to simultaneously localize themselves. Some
systems like [15] take a hybrid approach by using both a
source and receiver in the client device. Such collaborative

Fig. 2. Android App showing map of building. The App is streaming audio
buffers to a processing server, which returns position estimates in real time.
Red dots show positions of loudspeakers in three zones covered. The blue pin
indicates estimated position, which is updated in real time. The size of the
dots in that zone indicate peak strength, and red lines indicate which speakers
were used for estimation.

systems cannot be used to localize a single receiver. In other
systems like [16] the receiver senses multiple characteristic
spatial signatures in an environment to identify which part of
the environment it is in. Systems such as [17], [18] model the
acoustic background spectrum to produce location dependent
signatures. These signature based ‘fingerprinting’ methods
have the advantage of not requiring installed infrastructure,
but require training, provide only coarse level (e.g. room level)
localization, and are subject to sporadic changes in background
acoustics.

The proposed system differs from these systems as it is
a receiver localization system using controlled audio sig-
nals. Many systems employing ultrasonic waves [19], [20],
[21], [22], [23], [24] usually have a better ranging accuracy
compared to those that use audible sound, but these systems
have several limitations. They require dedicated special in-
frastructure - ultrasound transducers and wireless coordination
networks that are not used for any other purpose [25]. Most
low-end and PC speakers have a frequency response limited
to 20kHz, and many smartphones microphones are unsuitable
for ultrasonic signals. Also, ultrasound has a limited range
compared to audible sound due to greater attenuation while
propagating through the air. Another difference between ap-
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proaches using ultrasound and ours is that ultrasonic systems
can afford to use high-energy signals to boost signal-to-noise
ratio. We, on the other hand, cannot use high-energy sounds
as it might be disturbing to the people in the environment.
Hence, our approach is tailored toward localization in low SNR
conditions.

We differentiate our work in the following ways.
1) We use low-energy sounds as our reference signals.
2) We improve ‘effective SNR’ in the cross-correlations by

using long duration reference signals and recordings.
3) We assume no explicit prior synchronization between the

speakers and the recording device. This avoids overheads
like using a separate RF channel for synchronization.

We also introduce the following ideas in this paper.
1) Use of windowed cross-correlation and its modification

to address clock drift (Section IV-C) between playing
and recording devices.

2) A simple correlation quality heuristic to select a subset
of speakers so that only those speakers with good cross-
correlation peaks are selected for localization. This helps
in avoiding speakers for which correlation is very noisy.

3) Use of a solution fitness (residue in Section IV-E)
to decide whether the estimated value of t0, to be
introduced later, is accurate. This value of t0 can be
re-used later for better estimation.

III. ARCHITECTURE & SYSTEM

We have experimented with several variations of the pro-
posed system, and have built a flexible architecture to support
different types of experiments and modes of usage. The
architecture includes three primary elements: (1) audio players
responsible for playing known synchronized tracks from mul-
tiple speakers, (2) clients equipped with microphones, running
on laptops, tablets or smart phones, and possibly (3) processing
servers, which could be used by underpowered clients to
perform localization. Depending on usage requirements, audio
players may be controllable servers or standalone audio decks
playing continuously and autonomously.

The first mode we experimented with is the request-play-
record mode. A client requests that the server play known
signals from each speaker, and the client then records its
microphone signal. The recorded signal is processed, either
on the client, or in the case of an Android client, is uploaded
to a processing server. Finally, the result is returned to the
client, for display on a map. This usage scenario is shown
in Figure 3. In this case, although there is a rough level of
synchronization in the sense that the latency between client
requests and audio playing, may be on the order of .1 sec or
less, we do not assume precise sample level synchronization.
Synchronization is discussed in more detail below. For some
scenarios, it may be appealing for clients to be able to request
when sounds are to be played, but it has some disadvantages.
One is the requirement of additional infrastructure and system
complexity. Another is contention, since in a busy environ-
ment, different clients may request sounds to be played at
similar times.

Fig. 3. Request-play-record client-server mode. Clients make play requests
to audio server. The server plays audio, and clients record audio. Clients then
process audio locally, or upload to a server which processes recording and
returns location estimates. The audio server and processing server may be the
same machine.

A second mode, with many advantages in practice, is
continuous mode. In this mode, the signals are played con-
tinuously, independently of any client requests. The signals
played contain periodic pseudo random sequences, with period
of about .5sec. In some cases we mix those signals with other
sounds, such as music, which seem to have relatively little
effect on the performance of the system. Note that for this
mode, there is no a priori synchronization between player
and client, and in fact the player does not require a server.
We have successfully used an Oppo BDP-93 Blue-ray disc
player for this purpose. Also, in this mode, the clients are
running independently of the server and of each other. A client
simply records some audio, and processes it, when it wants a
localization. Note that in this mode, there is no single discrete
signal. Although the processing may be performed on a single
fixed length recording, it may also be performed continuously
as a sort of position tracker. In the continuous case, successive
audio buffers are used to estimate arrival delays, as peaks in a
running average windowed correlation. Position estimates are
recomputed each frame. An implementation of this continuous
tracker will be discussed in Section IV-E.

Several important issues of synchronization and timing
must be addressed in our system. All clients and servers
have software accessible system clocks. In addition, there
are sampling clocks used by all playing and recording audio
devices. It is not easy to ensure synchronization of system
clocks, because Android devices do not directly support an
accurate time protocol such as NTP without ‘unlocking’ the
devices to gain root privileges. It is also difficult to ensure syn-
chronization between system clocks and audio device clocks,
because the audio device interfaces typically do not provide
the system clock time associated with the first sample of each
audio buffer. We have found, and others have reported [11],
unpredictable variable delays between system time and true
sample time on the client side for various portable devices.
On the server side, even using a low latency audio interface
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Fig. 4. Continuous play mode. The audio system continually plays the signal,
and various clients record independently, and process locally or stream to
server for processing.

such as PortAudio [26] with ASIO drivers on Windows we
found unpredictable delays. Consequently, we have adopted
the strategy of treating the time delay between sample clocks
of the playing and recording devices as an unknown to be
solved for as part of the position estimation procedure. If
signals are played at sample time 0 of the playing device,
we associate this with sample time t0 of the recording device,
and treat t0 as unknown. Similarly, we found that even the
relative clock rates differ and should be estimated.

Fortunately we found that clock drift remains consistent
between pairs of devices, and also that within a given playing
and recording ‘session’ (i.e. in which the audio devices are
started and buffers are maintained without overflow and under-
flow) that synchronization is consistent for an extended time
on the order of many minutes or even hours. Consequently,
when our client software initiates audio capture, it records
the system clock time as a ’session id’ and associates with
each buffer filled by the audio device, the number of buffers
filled, and the corresponding number of samples, since the
beginning of that session. Even if the buffers are not all
used, this maintains synchronization. This requires that buffers
are accepted from the audio interface at a sufficient rate to
avoid overflow. We found that using the Android AudioRecord
Java interface, samples would sometimes be dropped. Even
some Audio Recording Apps show this problem - that over
the course of a long recording, samples would sometimes
be dropped. We found that by using the native JNI OpenSL
interface, this was avoided.

IV. LOCALIZATION

The basic methods of localization for both the request-
play-record and the continuous variations of the server-client
architectures discussed above are similar. Assume that sounds
from all speakers are played starting at time t0 and that sound
from speaker i reaches the microphone at time ti. If c is the
speed of sound, (x, y, z) the position of the microphone and
(Xi, Yi, Zi) the position of speaker i, the propagation delays

ti− t0 and distances di between speakers and microphone are
related by

di = c(ti − t0) =
√

(x−Xi)2 + (y − Yi)2 + (z − Zi)2 (1)

There is a distinct such equation for each speaker i. The arrival
times ti of the signals can be estimated using correlation meth-
ods as described in Section IV-A. The remaining unknown
quantities are the microphone position (x, y, z) and the time
t0 at which all signals start playing. Methods for determining
these are described in Section IV-D.

Once the server receives the recorded audio file, it performs
the following steps.

1) Perform cross-correlation of the recording with each
reference signal.

2) Detect peaks in the cross-correlation with i-th reference
signal to determine the time of arrival (ToA) at which
sound from speaker i reached the recording device.

3) Estimate the location based on these determined time of
arrivals (ToAs).

4) Respond back with the estimated location to the client.

A. Determining Time of Arrival (ToA)

If we model the impulse response between speaker i and
the microphone as a weighted delta function shifted by the
propagation delay, the signal at the microphone is

r(t) =
∑
i

wisi(t− τi) + η(t) (2)

were wi is attenuation of signal si(t) at the microphone, τi =
ti− t0 = di

c is the time for sound from speaker i to reach the
microphone, and η(t) is additive noise.

The signal arrival times can be estimated using cross
correlation or related methods. The cross correlation between
signals si and sj is defined as

Rij ≡ Rsi,sj (τ) ≡
∑
t

si(t)sj(t+ τ) (3)

By linearity, the cross correlation of the signal si played at
speaker i with the recorded signal r is

Rsi,r(τ) =
∑
j

wjRsi,sj (τ − τj) +Rsi,η(τ) (4)

If si(t) are selected so that

Rsi,si(0) >> Rsi,si(τ) (τ 6= 0) (5)
Rsi,si(0) >> Rsi,sj (τ) (i 6= j) (6)
Rsi,si(0) >> Rsi,η(τ) (7)

then Rsi,r(τ) will have its largest peak at τi, and τi =
argmaxτ Rsi,r(τ). We have used pseudo-random white noise
for the signals si as it satisfies the above conditions well.

In general, due to the presence of noise and multi-paths
between a source and a receiver, general cross-correlation may
not give distinctly identifiable peaks. This has been a topic of
research for decades and various generalized cross-correlation
techniques have been developed [27]. These techniques incor-
porate spectral weighting into the cross-correlation. Several
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spectral domain weighting schemes have been proposed in
literature and we have found good results using the Phase
Transform (PHAT), defined as

RPHAT
si,sj (τ) = F

−1
{
S∗i (ω)Sj(ω)

|S∗i (ω)Sj(ω)|

}
. (8)

Here, Si and Sj are the Fourier transforms of si and sj
respectively, ∗ denotes complex conjugation, and ω is the
frequency domain parameter. We have found PHAT to work
much better than unweighted cross correlation, and although
through this report we will use Rsi,sj (τ) in our discussion, it
should be understood that typically we would use RPHAT

si,sj (τ)
instead.

Note that in practice when we correlate si with r, we use
the signal that was actually played, ŝi(t) defined such that
ŝi(0) is the first sample. Then ŝi(t) = si(t+ t0), and

ti = argmax
τ

Rŝi,r(τ) (9)

These estimates are then used to solve for the microphone
location, as described in Section IV-D.

B. Low-energy long duration signals

Equations 5, 6 and 7 put certain constraints on the audio
signals that can be used for localization. These signals should
be uncorrelated with each other and also with lagged copies
of themselves. As such, naturally occurring sounds cannot be
used for this purpose. One good candidate signal is pseudo-
random noise sequence. However, we cannot play such signals
aloud in an environment as these are unpleasant to hear. Hence,
these signals are played with very low intensity (energy) so
that these are barely audible. We have found that these low-
energy noise signals can be added to the usual music being
played in the environment without degrading the perceptive
quality of the music and yet being effective in localization.

Although the use of barely audible signals allows us to use
controlled signals for localization, their signal-to-noise ratio
is very poor. Therefore, we play, record and correlate these
signals over a long duration. Cross correlation between these
long signals and their recordings improves the signal to noise
ratio significantly. Figure 5 demonstrates this improvement
where we show the cross-correlation of a 1-second long
recording with a 1 second long reference signal, compared
with a 10-seconds long recording correlated with a 10-seconds
long reference signal. Longer duration correlations have much
better correlation peaks. The overall localization accuracy also
improves with longer recordings as shown in Figure 8 in
Section V.

C. Windowed cross-correlation

Since we want to use faintly audible sounds, the signal-
to-noise ratio is not very high. As discussed in the previ-
ous section, we overcome this limitation by using longer
duration signal correlations. For a pseudo-random number
sequence si, the auto-correlation peak value Ri,i(0) increases
linearly with the sequence length n, whereas the nonzero
shift autocorrelation Ri,i(τ), τ 6= 0 and the cross-correlation

Fig. 5. The top figure shows cross-correlation of recorded signal with 1
second long played signal. Bottom figure is the correlation between 10 seconds
long recording with a 10 seconds long played signal. The 1-second long
signals used for the top figure were generated by extracting only the first 1
second of both recorded and played signals. Correlations of longer duration
signals show better peaks.

Ri,j(τ), i 6= j increase sub-linearly (
√
n). Hence, using longer

duration signals enhances peaks in the cross-correlation.
Since we compute cross-correlations using the FFTs of the

signals (equation 8), it might be computationally wasteful to
compute the FFTs of the entire lengths of the signal, if we are
interested in only a small window of correlation lags (as is
the case in the continuous tracker described in Section IV-E).
Therefore, we divide the signals into smaller segments, and
compute FFTs of only those segments which overlap with the
other signal segments for the desired correlation lags.

This windowed cross-correlation approach also helps in
addressing another issue which we faced with long duration
signals. Since the playback and recording devices have in-
dependent clocks, there may be differences in their actual
sampling rates which accumulate over time, resulting in a
loss of synchronization and a poor correlation peak. The
windowed scheme lets us take the mismatched clock speeds
(also known as clock drift) into consideration, as would be
discussed below. This can significantly increase the strength
of peaks in correlation as shown in Figure 6 where we can
see the remarkable improvement (by an order of magnitude)
in the peak strength when clock drift is taken into account.

In the following discussion, we use the term signal to refer
to the played signal and denote it by s(t). The recorded signal
r(t) is referred to as the recording.

We divide s(t) into multiple segments, each of length G.
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Fig. 6. Top figure shows correlation of a 30s long recording with a 30s
long reference signal without correcting the clock drift between the clocks of
playing and recording devices. When the clock drift is taken into consideration
(bottom figure), the cross-correlation shows remarkable improvement.

The segments are referred to as s0, s1, ..., sM−1, where M is
the number of segments in s(t). The FFT length, denoted by
F is determined as twice the next higher power of 2 than G,
i.e., F = 2dlog2Ge+1. While taking the FFT of the signal’s
segments, p = F − G zeros are padded to each segment
to make their length equal to F . The recording r(t) is also
divided into multiple overlapping segments shifted by p, each
of length F (except for the last one which may be smaller
than F ). These segments are labeled r0, r1, ..., rK−1, where
K is the number of segments in the recording.

Let Rsm,rk(τ) represent the correlation of m-th signal
segment with k-th recording segment for lag τ and Rsm,r
represent the correlation of sm with the whole recording.
Rsm,rk is computed only for values of τ in the range 0 to
p− 1, and is taken as 0 for other τ . Then,

Rsm,r(τ) =

K−1∑
k

δ(m, k, τ)Rsm,rk(τ − kp) (10)

Rs,r(τ) =

M−1∑
m

Rsm,r(τ +mG) (11)

δ(m, k, τ) is 1 if the m-th signal segment overlaps with
recording segment rk for lag τ , otherwise it is 0. Assuming
we want to find the cross-correlation for lags between τ1 and
τ2, we can avoid computing correlations between segments
that do not overlap for any desired lag between [τ1, τ2].

1) Accounting for clock drift: If fs and fm are the sampling
rates of speakers system and microphone system respectively,
then drift rate is defined as α = fm

fs
. To correct for clock drift,

the final accumulation of windowed correlations (equation 11),
is modified as

Rs,r(τ) =
∑
m

Rsm,r(τ +mαG) (12)

Note that if there is no clock drift, α = 1 and equation 12
reduces to equation 11.

2) Estimating clock drift: The drift rate needs to be deter-
mined only once per recording device. We place the recording
device very close to one of the speakers through which a 10
seconds long white noise signal is played. The played signal
is divided into multiple segments of equal length (say 4000
samples). For each segment, we correlate it with the recording
and find the position of the strongest peak. This peak denotes
where in the recorded signal the segment under consideration
of the played signal starts. Since the microphone was kept
close to the speaker, the strongest peak should be the direct
path peak. If there is a clock-speed mismatch, the starting
position of each segment in the recorded signal drifts. By
fitting a straight line between the start sample numbers of
multiple segments in the played signal (on X-axis), against
their corresponding peak sample numbers in the recording (on
Y-axis), we can find the drift rate as the slope of the line.

3) Avoiding spurious peak detection: The first occurrence
of a signal in the recording (ti in equation 1) is determined
by finding the peak in the cross correlation between the signal
and the recording. A challenge we encountered in this method
was the presence of spurious peaks in the correlation output
due to multi-path effects. Although this was not very frequent,
we noticed that in some locations, the peak due to multi-path
effect was stronger than the direct-path peak. Therefore, we
could not always choose the strongest peak as the direct path
peak. We avoided such false peak selection using the following
procedure. Locate the strongest peak in cross-correlation and
then check all values up to W samples before this peak. If
any cross-correlation value is more than a certain threshold
(β times the strongest peak), then select this value as the true
peak. The value of W is determined by the room dimensions.
If L is the maximum distance between any two points in the
room, then W = L

c f , where f is the sampling rate and c is
the speed of sound. The value of β is determined empirically
(0.7 in our experiments).

D. Location Estimation

Once ti is determined for each speaker, equation (1) has 4
unknowns - x, y, z and t0. Four (independent) equations are
required to determine these unknown quantities. Since each
speaker provides one equation, at least 4 speakers are needed
to determine all quantities.

Any non-linear optimization method can be used to estimate
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(x, y, z, t0) by minimizing the following error function.

f(x, y, z, t0) =
∑
i

[
√
(x−Xi)2 + (y − Yi)2 + (z − Zi)2

− c(ti − t0)]2
(13)

Note that if t0 is known, only three equations, and estimates of
ti for three speakers are needed. If in addition to t0, z is also
known (for e.g. by making an assumption about the height at
which a smartphone is being held) only two ti (and hence 2
speakers) are needed to solve for position.

Although linear formulations are also feasible, these require
more than 4 speakers to estimate the location. If all speakers
are in the same plane (for example when all speakers are roof-
mounted), a procedure specified in [11] can be used to estimate
the parameters using 4 speakers by solving the following
equation for each speaker pair (i, j).

(Xi −Xj)x+ (Yi − Yj)y + (Zi − Zj)z

−c2(ti − tj)t0 =
1

2
[(X2

i −X2
j ) +

(Y 2
i − Y 2

j ) + (Z2
i − Z2

j )− c2(t2i − t2j )] (14)

In practice, it is better to use more speakers than the
minimum required provided the speakers are neither occluded
nor too faint with respect to the recording device. In our
experiments, we found that using the ti estimates from all
speakers usually gave bad localization results. We attribute
this to speakers being occluded, or too far from the receiver.
This was also observed by Lopes et al [11]. To overcome this,
we define a speaker peak quality parameter qi (equation 15)
for each speaker such that speakers with better quality have
more pronounced peaks, and then choose the best n speakers
according to their qi scores.

qi =
maxRr,si
σ(Rr,si)

(15)

Here Rr,si is the cross-correlation between the recording r and
signal (si) from the i-th speaker and σ() denotes the standard
deviation operator.

E. Continuous tracker

Initially, we developed a request-play-record localizer in
which the client made a request to the server to play sounds
from speakers, recorded those sounds and uploaded this
recording to the server. The server analyzed the recording
to determine the 4 unknowns discussed earlier - x, y, z and
t0. Encouraged by the results, we built a continuous tracker
that could track a device over an extended period of time.
This tracker makes an assumption that z is around 1.25m, as
this is typically the height at which someone would hold a
smartphone. The tracker GUI, shown in Figure 1, can also
use the fact that t0 does not change for a recording device
if it keeps track of the number of samples recorded since the
beginning of localization.

Periodic signals with period T are played from all speakers.
The recorded signal shows correlation peaks at lag values in

the interval [0, T ). In order to process received data in real-
time, it is important to get a good bound (say τmin and τmax)
on correlation lag values within which the peaks would occur.
To do that, initially the tracker searches for peaks over the
entire period [0, T ) in the correlation signal for each speaker.
Once it finds the location of a strong peak in any of the
correlations, it chooses a window around that peak as the
defining [τmin, τmax] range. The size of this window depends
on the room size (max propagation time within the room).
With a block size of 4096 samples at 44.1kHz, the tracker can
find an appropriate lag window in less than half a second. This
is a one-time-per-session process, after which the device can
be tracked in real-time.

Once the appropriate window has been determined, the
algorithm in Figure 7 is used to continuously determine the
location. The subroutine nonlin_xyt0() in line 9 takes as
input speaker positions (Pi, i = 1 . . . N ), determined peaks
({ti}), approximate value of z and number of speakers to use
(4, here) to estimate x, y and t0. It also returns a residue res
which is the value of the error function defined in equation 13.
We have found that this residue is a good indicator of how
good the solution is. If the residue is small, the determined
location is usually very close to actual location. A large residue
indicates that the solution might not be correct. For this to
work, we need to use one more speaker than the number of
unknowns being estimated. We shall discuss this further in the
results section. bestSpeakers (line 15) takes the number
of best speakers required, along with speaker positions and
speaker qualities (equation 15) and returns a subset of the
speaker positions to be used for localization.

If we find a good solution, we remember the value of t0 as
t∗0. If, later, nonlin_xyt0() does not find a good solution
with 4 speakers, we use the saved value of t∗0 in nonlin_xy()
(line number 16) to estimate x and y with 3 speakers.

V. EVALUATION

We tested our approach in a meeting room of size 20ft ×
17ft × 8.5ft. 6 ceiling-mounted ordinary PC speakers were
installed (shown as red circles in Figure 1). The room is
moderately occupied by a set of desks, chairs and large TV
screens, and was not modified in any way for our system
beyond the installation of audio equipment. Two different
approaches were evaluated. In the first approach, request-play-
record localizer, an Android app deployed on a Google Nexus
S smartphone was used as the receiver. The app recorded
audio and uploaded it to a pre-configured server over Wi-
Fi. The audio level was audible, but soft enough that many
visitors to the room were not aware of it until it was pointed
out to them. We used signals of two different durations - 2
seconds and 10 seconds long. These signals were pseudo-
random number sequences sampled at 44.1kHz. 20 points
distributed roughly uniformly within the room were chosen
as ground truth. Localization was attempted 3 times at each
of these points. Figure 8 shows that the localization accuracy
was within 1 meter almost 80% of the times for the 10s long
signals. 2s long signals did not perform as well as the 10s
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Input: Speaker positions Pi; played speaker signals si;
approximate height of microphone z; peak
window size W ; peak threshold pth; residue
threshold rth, speed of sound c

Initialize: t∗0 = null1

while true do2

r(t)← new recorded signal3

Rsi,r(τ)← cross-correlation of r(t) with si(t)4

{pi} ← detectPeaks(Rsi,r(τ),W ,pth)5

{qi} ← {
maxRsi,r

standard deviation ofRsi,r
}6

{ti} ← {pic }7

{P 4
i }, {t4i } ← bestSpeakers({Pi}, {ti}, {qi}, 4)8

{x, y, t0},res← nonlin_xyt0(P 4
i , {ti}, z)9

if res < rth then10

Output x,y,z11

t∗0 ← t012

else13

if t∗0 not null then14

{P 3
i }, {t3i } ←15

bestSpeakers({Pi}, {ti}, {qi}, 3)
{x, y},res← nonlin_xy(P 3

i , {ti}, z, t∗0)16

if res < rth then17

Output x,y,z18

end19

end20

end21

end22

Fig. 7. Periodic tracker algorithm.

signals. Also compared are the performance using the best 4
speakers (as per equation 15) against performance using all 6
speakers.

We also developed a continuous tracker, as discussed in
section IV-E. Its performance was evaluated using a Blue
Microphones YETI mic connected to a laptop running a client
developed in Python. For each ground truth position, the client
requested localization around 200 times (each request was
an audio recording of 4096 samples at 44.1 kHz). Figure 1
shows a snapshot depicting the localized mic (green dot). The
green lines show the speakers used for localization in that step.
Performance results are computed for all points put together.
Table I shows how various methods perform for a residue (res
as defined in Figure 7) threshold (rth) of 0.01 (determined
empirically) and accuracy within 50cm (eth). Figure 9 shows
localization accuracy for different types of estimators used in
continuous tracking.

In this evaluation, apart from the linear solvers, we tested
several non-linear location estimation methods based on the
error function in equation 13. We would call the linear solvers
lin_best4 (using best 4 speakers) and lin_all (using all
6 speakers) subsequently. The non-linear methods are named
nonlin_xyt0_N. The N refers to the number of speakers
used for localization: 3, 4, 5 and 6 in this case, respectively.

Fig. 8. Location estimation accuracy of linear estimators for request-play-
record localizer. It is evident that performance is better using longer duration
signals and recordings. Also note that using the best few speakers gives better
accuracy than using all speakers.

TABLE I
PERFORMANCE (%) OF VARIOUS METHODS FOR RESIDUE THRESHOLD

(rth) OF 0.01 AND ERROR THRESHOLD (eth) OF 0.5M (I.E.,
LOCALIZATION ACCURACY OF 0.5M OR BETTER).

Method r < rth r < rth r > rth r > rth
e < eth e > eth e < eth e > eth

lin best4 82.5 17.5 0 0
lin all 0 0 52.7 47.3
nonlin xyt0 3 94.02 0.18 0 5.8
nonlin xyt0 4 83.26 0 0 16.74
nonlin xyt0 5 76.92 0 0.24 22.84
nonlin xyt0 6 33.17 0 1.43 65.4
hybrid 83.62 0 0 16.38

These subroutines correspond to the algorithm in Figure 7 with
lines 13 through 20 removed. We also tested the full algorithm
(referred to as hybrid for subsequent discussion). In each of
these evaluations, we assumed the height of the microphone
to be around 1.25m from the ground. The only unknowns to
be estimated were x, y and t0.
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Fig. 9. Location estimation accuracy of various estimators for continuous
localizer (tracker) .

From the results, we can make the following observations.
Localization accuracy does not always improve with more
speakers, as discussed in section IV-D. Solvers using 3 or 4
speakers consistently performed better than the solvers using 5
or 6 speakers. The non-linear method with 3 speakers performs
the best, localizing within 20cm 94% of the times. However,
there is a non-zero chance (0.18%) of selecting a bad solution
even with low residue (see the second data column in Table I).
The non-linear method with 4 speakers also does well; not as
well as the method with 3 speakers, but it has the advantage
that a low value of residue is consistently indicative of a
good solution. Finally, the hybrid method marginally improves
upon the accuracy of the nonlinear method with 4 speakers.
This improvement comes when nonlin_xyt0_4 fails to
determine a good solution and the system uses a previously
determined good estimate of t0 to solve for just x and y (lines
13 to 20 in the algorithm shown in Figure 7.

VI. DISCUSSION

Since in the tracker, z is set to be 1.25m, only x, y
and t0 are estimated during localization. If x̂, ŷ and t̂0
are the values estimated by a non-linear solver, then the
residue= f(x̂, ŷ, z = 1.25, t̂0). Using just 3 speakers to
determine the 3 unknowns, the residue would typically be
zero (if a numerical solution consistent with the ti’s is found)
even though this solution may be inaccurate due to errors in
the estimates of ti.

Hence, with 3 speakers, if residue is small, there is no
guarantee that the obtained solution will be correct. How-
ever, if we use 1 additional speaker, then a low residue
would indicate a good solution. As can be seen in Table
I, the probability of selecting a bad solution (e > eth)
for a low residue is 0 when we use 4, 5 or 6 speakers
(nonlin_xyt0_X, X= 4, 5, 6), but is non-zero if 3 speak-
ers are used (nonlin_xyt0_3). Therefore, we recommend

using one additional speaker more than the number of un-
knowns to be determined. However, care should be taken that
none of the speakers should get occluded, or be very far from
the receiver. The speaker quality defined in equation 15 helps
in selecting the appropriate speakers.

VII. CONCLUSION AND FUTURE WORK

We have implemented an audio-based indoor localization
system using low-energy pseudo-random sequences played
through ordinary speakers. While determining ToAs, in order
to improve signal-to-noise ratio, long duration sequences were
used. To speed-up the computation of cross-correlation (by not
computing cross-correlation for lags which are not required),
windowed-cross-correlation was used. It also allows us to
compensate for any clock drifts between the playing and
recording devices. Our system has been deployed in multiple
zones across our office building and is now a component of a
system in constant operation. Evaluations in an actual meeting
room demonstrate the efficacy of our approach.

There are several aspects which we would want to ex-
periment with in the future. As of now, the speakers play
pseudo-random sequences. We also tried adding this noise
sequence to a music track such that the noise was barely
perceptible against the music. Experiments using this noisy
reference signal looked promising and we would like to test
and evaluate this in real world settings. A variation would
be to design signals which incorporate the random sequences
in such a manner to allow higher power as part of naturally
pleasing sounds like running water, ocean waves, waterfalls,
and so on.

Although currently our Android clients stream audio to a
server for processing, implementing the processing on the
device should not be difficult. We already needed to add a
JNI module to avoid occasional dropped samples, and the
correlation processing could be added at that level. This would
greatly enhance scalability, as any number of portable devices
could be simultaneously performing localization. Furthermore,
since the pseudo random periodic signals played from each
speaker are fully characterized by duration, sample rate, and
a single integer used as the random number seed, the small
amount of meta-data necessary to perform localization could
easily be made available from any indoor map web service
associated with the location.
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