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Abstract
We demonstrate how the multitude of sensors on a smart-
phone can be used to construct a reliable hardware fin-
gerprint of the phone. Such a fingerprint can be used
to de-anonymize mobile devices as they connect to web
sites, and as a second factor in identifying legitimate
users to a remote server. We present two implementa-
tions: one based on analyzing the frequency response
of the speakerphone-microphone system, and another
based on analyzing device-specific accelerometer cali-
bration errors. Our accelerometer-based fingerprint is es-
pecially interesting because the accelerometer is accessi-
ble via JavaScript running in a mobile web browser with-
out requesting any permissions or notifying the user. We
present the results of the most extensive sensor finger-
printing experiment done to date, which measured sensor
properties from over 10,000 mobile devices. We show
that the entropy from sensor fingerprinting is sufficient to
uniquely identify a device among thousands of devices,
with low probability of collision.

1 Introduction

Many Internet services need reliable identifiers to iden-
tify repeat visitors. The simplest identifier, a Web cookie,
works well, but is unreliable in case users clear cook-
ies, block 3rd party cookies, or use private browsing
mode. This lead to the development of stronger identi-
fiers such as supercookies. The Panopticlick project [18]
showed that desktop browsers are sufficiently different
to be identified. However, the project noted that mobile
browsers, especially on iOS, are too similar for this ap-
proach to work.

The need for robust identifiers is even stronger on mo-
bile devices. First, as above, Web sites wish to iden-
tify repeat visitors. Second, cloud-based services who
develop mobile applications often need a robust phone
identifier. Consider the following scenario: a user in-
stalls a cloud-based app and the app installs an identifier

on the device. Later the user resets the device to its fac-
tory settings thereby deleting the app and its stored iden-
tifier. The user then re-installs the app and connects to
the cloud service. At this point the service cannot tell
whether it has already seen the device before. This sim-
ple trick may allow a misbehaving user whose account
was blocked to reconnect to the service using a different
identity.

More generally, online device identification is a topic
of much interest to advertising networks and organiza-
tions providing security services. The need to identify
remote peers is always pitted against concerns that iden-
tifying information may be misused. Rapidly evolving
mobile technologies pose new challenges to preserving
user privacy and one of our goals in this paper is to ex-
plore these challenges, and inform the design of future
mobile device platforms.

To obtain a robust identifier for mobile devices many
app developers have turned to a hardware ID that sur-
vives a device reset to factory settings. A recent study
shows that 8% of Android apps use the International
Mobile Equipment Identity (IMEI) as a hardware device
ID [19]. This type of practice is frowned upon to the
point that Apple disallows apps who read the iOS Uni-
versal Device ID (UDID) on their app store [25].

Our contribution. We show that the multitude of sen-
sors on a modern smartphone can be used to build a ro-
bust device ID, or fingerprint, that is independent of the
software state and survives a hard reset. Our results show
a unique device fingerprint can be computed without ac-
cessing traditional hardware identifiers such as the IMEI
or UDID. Consequently, simply disallowing app access
to the device UDID is an ineffective privacy policy.

We experiment with fingerprinting using two sensors:

• The speakerphone-microphone system: the fin-
gerprinting system uses the speakers to emit a
sequence of sounds at different frequencies and
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records the resulting signals using the microphone.
The fingerprint is computed by looking at amplitude
and frequency distortions in the recorded signals.

• The accelerometer: the accelerometer measures
forces in each of the three dimensions. Impreci-
sions in accelerometer calibration result in a device-
specific scaling and translation of the measured val-
ues. By repeatedly querying the accelerometer we
estimate these calibration errors by solving an opti-
mization problem and using the resulting six values
(two for each dimension) as a fingerprint.

By collecting sensor measurements from over 10,000
mobile devices we show that the resulting fingerprints are
robust and survive a hard device reset. Moreover there is
sufficient entropy in the fingerprint to reliably identify
the device among thousands of devices.

Recently, [16] proposed a method to fingerprint an ac-
celerometer while it is vibrating (e.g. during an incom-
ing call or message). This method depends on the sur-
face on which the phone lays and the case in which it is
enclosed. In contrast, our method is oblivious to these
factors. Ref. [12] and [14] proposed methods to finger-
print loudspeakers. Our method differs by allowing to
fingerprint the combination of loudspeaker and micro-
phone thus yielding more fingerprint entropy.

2 Threat Model

Device identification may be used for both malicious and
benevolent purposes. Here we focus on the offensive po-
tential of sensor fingerprinting.

A malicious website may wish to track its users with-
out resorting to any browser storage such as cookies, and
without triggering any permissions warnings. Each de-
vice that comes into contact with the website is finger-
printed and classified as one of the already known de-
vices or as a new one—if its fingerprint differs suffi-
ciently from those in the database. The malicious web-
site is assumed to be accessed by the user for a long
enough time interval, during which the user may possi-
bly leave the device unattended or unused. The user does
not suspect that fingerprinting is taking place and does
nothing aimed specifically at disrupting the process.

3 Background

There are a few standard methods for mobile device iden-
tification that can be used by a native (but not browser-
based) application. These methods use information ex-
posed by the operating system, however all of them are
either applicable to only some versions of an OS or the

identifying information reported by the OS can be eas-
ily changed by the owner of the device thereby evading
identification. We now list some of these standard iden-
tification methods in the context of the two most popular
mobile operating systems: Android and iOS. For each
method we detail its most important features and restric-
tions. The following is primarily based on [7].

3.1 Android
Device ID: The method getDeviceId of the Telephony-
Manager class returns the unique ID for a phone, for ex-
ample, the IMEI for GSM phones and the MEID or ESN
for CDMA phones [6]. However, no such ID exists for
mobile device which do not have telephony capabilities.

MAC address: One can retrieve the MAC address of
one of the device’s network interfaces (e.g. WiFi and
Bluetooth). However, the owner of a device is able to
change the MAC address of the device. For example, see
the “MAC Address Ghost” application [20].

Serial number: The field SERIAL of the Build class
contains a hardware serial number, if one is available on
the device [3]. This field is only available on version 2.3
and later.

ANDROID ID: The constant ANDROID ID of the
Settings.Secure class is a 64-bit number that is randomly
generated on the device’s first boot and remains constant
for the lifetime of the device [5]. However, the value may
change if a factory reset is performed.

3.2 iOS
UDID: The Unique Device Identifier (UDID) is the pri-
mary method for the identification of an iOS device. It
is retrieved using the uniqueIdentifier property of the
UIDevice class. However, since iOS 5 it has been depre-
cated [24].

identifierForVendor: This is a property of the UIDe-
vice which is only available in iOS 6 and later. It is an
alphanumeric string that uniquely identifies a device to
the applications vendor, i.e., different application ven-
dors will retrieve different identifiers [24]. However, the
value of this identifier is deleted once the user uninstalls
the last application from a particular vendor. If he later
reinstalls an application from that vendor, the a new iden-
tifier value will be generated.

advertisingIdentifier: This is a property of the ASI-
dentifierManager class which is only available in iOS 6
and later. It is an alphanumeric string unique to each de-
vice and is intended to be use by advertisers [23]. How-
ever, the value of this identifier is reset once the device is
erased by the user.

MAC address: As in Android, a MAC address may
be forged by the owner of the device.
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4 Use of Sensors for Identification

The key observation behind this work is that different
hardware instances of a particular sensor are quite dif-
ferent, mainly due to imperfections in the manufacturing
and assembly process. These variations introduce biases
into the sampled data read from the sensor that are unique
to the specific sensor. Moreover, these variations are per-
sistent throughout the life of the sensor. By measuring
the imperfections we can consistently identify devices
carrying these sensors.

We start by defining different types of sensor biases,
and then follow with an overview of commonly encoun-
tered sensor types.

4.1 Common Bias Types

Linear bias: For many sensor types the value of their
measurements can be approximated as a linear function
of the true value they measure, i.e. vm = vtS+O. Here
vm and vt are the measured and true values, while S and
O are the sensitivity and offset of the sensor (in other
words S and O are the calibration parameters specific to
the sensor). Ideally, the parameter values should be S = 1
and O = 0. Approximate linear bias can be found in ac-
celerometers [17], gyroscopes [9], magnetometers [30],
and camera pixels [22]. We note that in most sensors a
linear bias is only an approximation of the actual bias.
Some sensors also manifest random and quantization
noises, while other sensors exhibit cross-dimensional ef-
fects, where the measured value in one dimension affects
the measurements in the other dimensions. Another ex-
ample of a linear bias is clock drift. The absolute differ-
ence between a clock’s time and the true time increases
linearly as time goes by. Here the clock’s sensitivity is
also referred to as the clock skew.

Tolerance: For some sensors their measurements can
not be modeled as a simple linear function of the true
value. In such cases the measurements will be within a
predetermined range relative to the true value. For ex-
ample, the output gain of a microphone for a specific
frequency may vary with ±2db within the actual input
power.

Timing: In addition to the bias of the actual measure-
ments a sensor may exhibit variance in the time it takes
to produce measurements. Sensor data is often gathered
when the hardware triggers an interrupt, signaling that
there are new readings available. The timing of this in-
terrupt may vary across devices, and then it can be used
as part of an identification scheme. Interrupt timing is
relatively difficult to access from application code, but
still it may be a viable component in a larger fingerprint-
ing scheme.

4.2 Common Sensor Types
Our goal is carrying out a comprehensive survey of sen-
sors that are commonly available on mobile devices, de-
signing specific identification techniques wherever pos-
sible.

Sensor Imperfection Comment
Audio tolerance gain Section 5

Accelerometer linear bias Section 6
Gyroscope linear bias no baseline

Magnetometer linear bias variability,
hysteresis

Ambient light linear bias no baseline,
sporadic data

GPS clock skew not observable
Touch screen misalignment no baseline

Camera pattern noise see [28]

Table 1: Common mobile device sensors along with a
description of their imperfection. Non-covered sensors
show the reason why use for identification is difficult.

Table 1 lists the different sensors we have looked at.
While in theory most sensors have some sort of mea-
surable bias, in practice the defect may not be readily
exposed under “normal” conditions, consistent with the
threat model that we have outlined, or no baseline mea-
surement is available to calculate the bias.

In this paper we describe two successful attempts
for sensor fingerprinting: audio (microphone/speaker) in
Section 5 and accelerometer in Section 6. In Appendix C
we sketch some of the difficulties that hindered identifi-
cation using other sensors listed in Table 1.

5 Device Identification via the Microphone

The main specification of a microphone and a loud-
speaker is the frequency response graph. A microphone’s
frequency response is its normalized output gain over a
given frequency range. Conversely, a loudspeaker’s fre-
quency response is its normalized output audio intensity
over a given frequency range. Ideally for both devices,
the frequency response should be the same for all fre-
quencies in the range. However, a typical microphone
or loudspeaker has a response curve that varies across
different frequencies. These variations are dependent on
the design of the audio device. Figure 1 depicts a typical
frequency response curve for a microphone.

Due to manufacturing inconsistencies the frequency
responses of each instance of a microphone or a loud-
speaker are not identical even if they are of the same
model. A device’s response for each frequency has a tol-
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Figure 1: A typical frequency response curve for a mi-
crophone. Note that for some frequencies the audio is
exaggerated (larger than 0 dB) while for others it is at-
tenuated (smaller than 0 dB).

erance relative to its response specified by the manufac-
turer. A typical tolerance for commodity microphone and
loudspeakers is ±2db. This frequency response variance
gives rise to our first fingerprinting scheme.

5.1 Fingerprinting Scheme
When it comes to fingerprinting, the sound domain is
unique because mobile devices have the ability to both
transmit (via the speaker) and receive (via the micro-
phone). This in turn allows us to build a completely self-
contained fingerprinting scheme, dependent only on the
device being in a relatively quiet environment (to mini-
mize signal noise). In our scheme a device’s audio finger-
print is the composed frequency response of the device’s
speaker and microphone. In a nutshell, we play using the
speaker an audio signal at a given intensity and we record
it using the microphone. We divide the recorded intensity
by the original intensity. We refer to this as the feedback
ratio. We measure the feedback ratio for several different
frequencies. Figure 2 illustrates this process.

Figure 2: Diagram of sound feedback analysis. Within
the confines of the device, the application emits sound
via the built-in speaker (1), the sound reaches the mi-
crophone in a distorted and attenuated form (2), and the
application records the microphone signal and analyzes
it (3).

The signal recorded by the microphone is processed
in the following way. We isolate the main frequency, as

well as its harmonics, by computing Fourier coefficients.
Specifically, for each played frequency fi, we record 1
second of samples (8000 integers at the typically sup-
ported sampling frequency) in the vector Ri, and calcu-
late the j-th harmonic system response (for j = 1,2, . . . )
as follows:

ri j =
√

C(i, j) ·Ri +S(i, j) ·Ri

Here C(i, j) and S(i, j) are vectors of 8000 samples of
the reference signal as a cosine and sine function at fre-
quency j fi.

Hz 220 330 440 550 660 880 1320

Table 2: Frequencies at which we measure the feedback
ratio for each device. The range and granularity of mea-
surements can be extended, resulting in more data about
each device. We have tried to stay below 2000Hz in or-
der to be able to measure at least the second harmonic
response at each frequency.

Figure 3: Comparison of the first harmonic feedback ra-
tio curves obtained for three devices, each placed in three
different locations (the same three locations used by all
devices). Each device’s curve is labeled with a distinct
marker type and color. Feedback ratios (y-axis) are cal-
culated at seven different frequencies (x-axis).

We repeat the playback, recording, and analysis at
each frequency (Table 2), obtaining 7 floating-point
numbers (ri j’s) for each harmonic. Our analysis focused
on the first two harmonics ( j = 1,2). Figure 3 shows
a comparison between the first harmonic measurements
obtained from three different devices when measured at
three different, fixed physical locations each. We note
that the feedback ratio for a device is similar but not iden-
tical across locations. For example, a device’s feedback
ratio is dependent on the acoustic properties of surface
on which the device lies and the acoustic properties of
the device’s surroundings. This poses a potential diffi-
culty for this fingerprinting scheme.
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5.2 Experiment: L2-Distance Classifica-
tion

Figure 4: Comparison of second-harmonic curves for all
devices. Each device is represented by three adjacent
curves that have the same color and fill pattern.

We used 16 identical Motorola Droid devices to as-
sess the feasibility of a fingerprinting scheme based on
sound feedback analysis. We selected three locations
(one on a wooden desk, one on a metal filing cabinet, and
one on a composite wood windowsill). Each smartphone
was placed at each location and measurements were
taken. The measurements were performed by an An-
droid application that we side-loaded onto each phone.
The application requires only the RECORD AUDIO and
MODIFY AUDIO SETTINGS permissions, and once
launched it adjusts the sound volume to a fixed, medium
level and then plays a three-second sound at each fre-
quency, recording the middle one second back on a sep-
arate Java thread. That one-second recording is used as
the vector R in subsequent analysis.

Figure 4 juxtaposes the processed data obtained from
all 16 devices. The similarity of the data from the same
device across locations is evident, as are the differences
between different devices.

Distance Metric
Test Location1 A B B’ B”

2 68.8% 100% 62.5% 56.3%
3 43.8% 75% 50% 37.5%

Table 3: Performance of simple L2 distance-based clas-
sification of data from locations 2 and 3 (location 1 data
were used for the learning step). When first harmonic
(Distance A), and second harmonic (Distance B) feed-
back are compared, second harmonic is almost always
more reliable and performs better than first harmonic.
Using the second harmonic’s first and second derivatives
only appears to have a negative overall impact.

In order to estimate the amount of information that can
be derived from this type of signal metric we designed a

simple algorithm which uses one location’s measurement
from each device to “learn” its fingerprint, and then tries
to match the data from the remaining two locations to the
device for which the learned fingerprint is the closest. If
a data set is matched to the device it originated from, we
count it as a correct detection (Table 3).

5.3 Experiment: Maximum-Likelihood
Classification

From the initial set of results it was clear that using the
response amplitude at the second harmonic frequency
gives the best results, however the classification accu-
racy clearly left something to be desired. We performed
a second experiment with the same batch of Droid de-
vices (excluding one which was faulty2).

Figure 5: Four overlaid frequency response curves at a
different location.

In the second experiment, we measured response am-
plitudes at 13 different frequencies, from 100Hz to
1300Hz at 100Hz increments. We measured the response
of each device at the same three locations we used in the
previous experiment, however we ran the measurement
four times at each location. Figure 5 illustrates why the
simple Euclidean distance-based classification approach
was not as precise as we wanted: at some frequencies,
on some surfaces, there is simply too much variation—
which results in a large penalty when calculating dis-
tances. Other frequencies offer much smaller tolerances
and can be used to identify the device more accurately.
Fortunately, the maximum-likelihood estimation method
is designed to deal with just this type of situation.

Our new scheme is based on the following simple
setup (all frequency response measurements are at the
second harmonic frequency—this will be implied for the
rest of this section): for each device we assume that its
response at a certain frequency is a normally distributed
random variable. Given enough samples, we can esti-
mate the mean and variance of the distribution. Later,
when we encounter a device, we can calculate the like-
lihood that it matches any of the known devices in our
database—and select the one that maximizes the likeli-
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hood. Formally, based on the training data from device
Dk, at each frequency fi we estimate the mean of the re-
sponse µ(k, i) as well as the variance σ2(k, i). Then we
select the device Dkmax that was most likely to produce
this measurement:

kmax = argmax
k

13

∑
i=1

− (vi −µ(k, i))2

σ2(k, i)
(1)

Equation 1 follows from the formula for the joint prob-
ability of normally distributed, independent variables af-
ter taking a logarithm (to turn the product into a sum) and
maximizing the resulting sum.

Frequency
Test Location Main 2nd Harmonic

1 100% 100%
2 100% 100%
3 100% 100%
1 93.3% 100%
2 100% 100%

3 (untrained3) 73.3% 80%

Table 4: Performance of MLE-based classification. The
first run provides training data from all three locations,
then tests at them. The second run omits Location 3 from
the training data, yielding worse device recognition rates
at the unknown location. The experiment involves 15
devices.

The results from using maximum-likelihood estima-
tion are shown in Table 4.

5.4 Improving Measurement Stealth
According to the method for microphone and loud-
speaker characterization described so far we played each
frequency separately. In order to achieve more stealth
and shorter sound playback times we examined another
method. We choose several frequencies that are not har-
monics one of the other, and play them simultaneously.
We compute the FFT of the recording and extract the sec-
ond and third harmonics of the chosen base frequencies.
We use the energies corresponding to those frequencies
to construct the feature vector corresponding to the de-
vice. We obtained feature vectors from 17 devices using
this method and tested K-NN classification performance
on this data using 10-fold cross validation, achieving cor-
rect identification percentage of approximately 95%.

6 Device ID Using the Accelerometer

An accelerometer measures the acceleration force that is
applied to a device along all three physical axes. Recall

that the sensor’s reading, vm, along the v axis is related to
the actual device acceleration, vt , at that axis as follows:
vm = vtSv +Ov [17]. Here Sv and Ov are the sensitiv-
ity and offset parameters of the accelerometer—note that
for a three dimensional sensor there are 6 such parame-
ters. We can use a well known acceleration baseline to
measure the accelerometer’s offset—Earth’s gravity (de-
noted by g)4. At rest the phone experiences an accelera-
tion with a true magnitude of exactly g. The orientation
of that acceleration depends on the relative orientation of
the phone to the Earth’s surface.

6.1 Fingerprinting Scheme
The accelerometer is convenient to fingerprint for sev-
eral fundamental reasons: the user often leaves the de-
vice still—for instance on a desk, or in a purse; as noted
above, when the device is not moving the magnitude of
the acceleration vector on the device equals g; finally,
acceleration can be measured by an Android application
that does not require any permissions [4], and what is
more, iOS as well as Android browsers expose this func-
tionality to websites without notifying the user.

In contrast to audio-based fingerprinting, there is no
good way to feed a signal into the accelerometer, namely
exert a known acceleration force; instead we take an
approach of performing background measurements and
waiting until there is enough data to estimate the ac-
celerometer calibration parameters. We perform a mea-
surement every time the phone is at a resting position, or
more precisely, the phone is at a constant velocity (no ac-
celeration). Note that in most reasonable cases it is very
unlikely that a phone will not be at rest for an extended
period of time. Detecting the phone is at rest is relatively
straightforward: the measured acceleration vector should
be static and its magnitude should roughly5 be equal to g.

6.1.1 Estimating Oz and Sz

Let’s assume that throughout our measurements the de-
vice will be lying flat and still on a table and thus the Z
axis will register practically all the acceleration due to
Earth’s gravity. If the sensitivity parameter Sz of the sen-
sor is known, then it is easy to estimate the offset from
a single measurement zm: Oz = zm −gSz. Unfortunately,
given an arbitrary device Sz is unknown and thus we need
two measurements—one with the device facing up (zm+)
and one facing down (zm−). Using these two numbers
one can calculate the two bias parameters for the Z axis6.

Sz = (zm+ − zm−)/2g

Oz = (zm+ + zm−)/2

We will see that this method yields very satisfactory
results in a variety of experimental settings even if the
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surface on which the phone lies is not perfectly level.
This method may be exercised without user cooperation
since it is quite plausible that the user will sometimes
leave their device facing up, and sometimes facing down
on a table or a desk. We note that by gathering more
data and applying more sophisticated processing, all six
accelerometer parameters can be estimated at the same
time, with no restrictions on device orientation during
measurement (Appendix B).

6.2 Using a Web Page to Profile the Ac-
celerometer

We started out by building an Android application to
track accelerometer readings, filter out any instability,
and carry out the simple calculations required to estab-
lish Sz and Oz for a given smartphone.

While the application did not require any permissions
to access the accelerometer (it is not considered to be a
sensitive module by the Android framework), it would
need the INTERNET permission to report its findings.
We therefore instead built a light-weight JavaScript im-
plementation that runs entirely in the mobile browser.

An implementation contained within a web page
has the advantage that the user doesn’t need to install
anything—assuming the user can be convinced to leave
the device facing up and then down for some time, a sin-
gle visit to a website can result in a fingerprint being cal-
culated.

To collect accelerometer data in JavaScript we im-
plement a function to handle window.ondevicemotion
events:

window.ondevicemotion = function(event) {

var x = event.accelerationIncludingGravity.x;

var y = event.accelerationIncludingGravity.y;

var z = event.accelerationIncludingGravity.z;

...

}

The first time when our function is called we clear all
state and set a text message that instructs the user on how
to proceed. Every accelerometer reading results in a new
call, where we gather data in batches that are relatively
uniform (to avoid noise) and point in a direction that we
need (either the positive or negative Z axis, that is, or-
thogonal to the device screen). When we gather enough
positive or negative Z data we instruct the user to flip the
device so that we can complete the gathering process.

Finally, when enough data is collected, we estimate Sz
and Oz for the device and post the result to our web site
for future analysis. We also generate a random number
and set a cookie with it in the user’s browser. The cookie
is also posted to our server to help us correlate different

submissions while assessing the error rate for our finger-
printing algorithm.

6.3 Experiment: Initial Evaluation
We carried out our first accelerometer profiling experi-
ment on a group of 17 iPhone and iPod Touch devices,
obtaining multiple measurements from each.

Figure 6: Scatter plot of data obtained by accessing the
accelerometer profiling web page from 17 iOS devices.

Figure 6 presents a scatter plot of the estimated ac-
celerometer parameters for all devices in the experiment.
There were only two pairs of devices whose measure-
ments were “too close”—one of the devices in each pair
uses triangular markers instead of the usual round ones.

In our lab, using the batch of identical Motorola Droid
devices from the audio experiments in Section 5 we
were able to double the amount of data available. Be-
cause the Droid devices were too old and did not support
JavaScript access to the accelerometer, we implemented
an Android application which gathers the necessary data
and processes it according to the same algorithm used
by the web-based implementation described earlier. The
application does not require any special permissions to
install, as accelerometer readings are not considered to
be significant for preserving user privacy.

The Droid data was also promising: from the 16 de-
vices under study, there was only one near-collision.
We combined the data obtained from the two initial ac-
celerometer experiments in order to have the largest pos-
sible set of devices and thus assess realistically how fea-
sible it is to identify handsets.

Our identification algorithm took two data samples
from every device (most iOS devices only had two data
points each anyway, due to constraints at the time of
gathering; Droids had four samples each and we experi-
mented with picking the first two, last two, and the first
and last—Figure 7). We used the first of these samples as
the device fingerprint, and the second one as a datapoint
to be mapped to the closest of the known fingerprints. We
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used the square of the Euclidean distance between these
points in the plane: (Oz2 −Oz1)

2 +MSz(Sz2 −Sz1)
2. Here

MSz is a scaling factor used to reflect the different scale
of Oz vs. Sz distances: while Oz typically ranges be-
tween −0.5 and 0.5 (Figure 6), Sz (being a multiplicative
parameter in our model) is much more narrowly spread
between 0.99 and 1.04. This suggests a scale of about
10 for the values and about 100 for the squares. Indeed,
the plot for the rate of correct identification as a function
of this scaling factor is shown in Figure 7 and confirms
this estimate, showing 100% recognition for MSz values
between about 200 and 1000.

Figure 7: Percent correctly identified devices as a func-
tion of MSz in the distance formula. The red, green, and
blue lines correspond to different ways of picking the
training and test samples for Droid devices—the optimal
values for MSz fall in the same range in all three cases.

6.4 Experiment: Large-Scale Accelerome-
ter Fingerprinting

Armed with insight from smaller-scale experiments in
accelerometer fingerprinting we set out to expand the
scope of the inquiry. Our goal was to gather data from a
large number of devices in order to prove that accelerom-
eters can be fingerprinted robustly in the context of a web
application

We built an experimental public website [2] and pub-
licized it in online as well as in printed media. Over the
course of two weeks we gathered more than 16,000 sub-
missions.

Website design. Our experiment website consists of a
data-gathering page, and a dynamically generated chart
page that the user can navigate to after submitting his or
her device’s readings. The chart page displays a scatter
plot of all data points that have been recorded so far, and
shows the current user’s submission in a distinct color
(Appendix A). Effectively, the coordinates of the user’s
device on the grid comprise the accelerometer’s Z-axis
fingerprint.

The user is encouraged to go back to the data-
gathering page, repeat the process, and see if the sec-
ond identifier displayed matches the first one. Our
data-gathering web page plants a cookie7 in the user’s
browser, which makes it possible to correlate data points
coming from the same device8.

The web site is implemented completely in JavaScript:
no native code or Flash. We found that this method works
reliably on a broad range of Android and iOS devices.

Figure 8: Different OS platforms as identified from the
User-Agent string in device data submissions. In this
chart multiple submissions from the same device are
counted as separate entries.

Data breakdown. We looked at several general prop-
erties of the data collected in order to ensure it made
sense and matches our expectations in terms of quality.
In Figure 8, we show the relative presence of different
platforms in our data set. As expected, Android and iOS
are the two dominant platforms, with a variety of others
present in negligible numbers.

Figure 9: Devices grouped by the number of their sub-
missions to our server. This chart reflects actual devices
(we have collapsed multiple submissions from the same
device into one entry for counting purposes).

Figure 9 slices the data by the number of submissions
we received from a devices. A large number of devices
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only ran the experiment once, another large group ran it
twice (as our web page suggests), with diminishing num-
bers submitting three, four, and more times.

Device fingerprinting results. Our large-scale ac-
celerometer fingerprinting experiment yielded enough
data to make a direct calculation feasible. In a pre-
processing scan, we create a list of all Oz and Sz dis-
tances between the two submissions of two-submission
devices. We find that the 95th percentile for Oz distance
is 0.045 (in other words, 95% of two-submission devices
had a smaller distance than that). For Sz this distance is
0.0037.

When we used these 95th percentile distances to di-
vide the Oz-Sz scatter plot into blocks of equal size—and
counted the data points in each block (Cxy)—we were
able to calculate overall entropy of the distribution as fol-
lows:

Pxy =
Cxy

∑x,y Cxy
(2)

Hdirect =−∑
x,y

Pxy log2 Pxy = 7.498 (3)

We verified that small variations of the grid origin had
minimal effects on the entropy estimate (specifically, we
saw less than 0.01 bit of entropy difference between the
smallest and largest estimated value, 7.493 vs. 7.502).
We consider this to be a confirmation that the result is
robust.

Note that this entropy measurement is based on the pa-
rameters of just a single axis (Z-axis). The identifier bits
from the accelerometer’s X and Y axes are not included
in this experiment. If the parameters of these axes can be
measured reliably then we would gain additional entropy,
allowing the identification of millions of devices.

For identification, we focused on two-submission de-
vices, and asked whether the second data point for such
devices is closest to the first data point from the same de-
vice, or to some other data point in the set. If the closest
data point is from the same device, we count this de-
vice as correctly recognized. Note that this is a rather re-
strictive protocol because we permit all of the data points
collected to impact the recognition, including data points
from one-submission devices which may or may not have
been carefully measured.

In this most restrictive setup, we managed to cor-
rectly identify 298 of the 3583 two-submission devices,
a success rate of 8.3%. When we only looked at two-
submission devices and further eliminated those whose
distance in either Oz or Sz was above the 95th percentile,
we were able to identify 543 devices, or 15.1%. While
these numbers may look weak, we have to recall that in
this identification procedure we are only using the ac-
celerometer, in only one of its dimensions.

Improving identification rate via the User-Agent
string. The User-Agent string identifies the type of de-
vice connecting to a web site. The User-Agent data, with
no other signals, permitted direct identification of 544
devices out of the set. The combination of User-Agent
and accelerometer inputs, however, increased the number
of correctly identifiable devices to 1900 devices or 53%.
Removing 95th percentile devices further increased the
correct recognition rate to 58.7%. This shows that the
accelerometer fingerprint can be quite effective at distin-
guishing devices with identical User-Agent strings.

6.5 Threat Mitigation

Device identification via sensor fingerprinting has benign
as well as malicious uses. In the context of privacy vi-
olation for example, it is worth considering the possi-
ble methods for mitigating this threat to mobile users.
For any particular sensor, the feasibility of fingerprinting
can be practically eliminated by calibrating the sensor at
the time of manufacturing. A different, software-only
approach can be to add a random value to the sensor
output at the OS level. This value can remain constant
during continuous use of the device, allowing software
such as mobile games to calibrate the sensor if needed.
During periods of long inactivity, the random value can
change—which would invalidate any device fingerprint
that may have been collected already.

We also believe that we have also made a good case
for re-evaluating the status of sensor data conferred by
browsers and mobile operating systems. Until now, sen-
sor streams such as accelerometer readings have not been
considered sensitive information—yet we have demon-
strated that they can be used to identify and track devices.
As smartphone operating systems and browser technolo-
gies mature further, we expect to see more uniform ac-
cess controls on device sensors.

7 Related Work

Sensor fingerprinting has received significant attention in
recent years, primarily in the context of de-anonymizing
photos by correlating them to images with a known
source. In [28], images taken by different cameras are
processed to derive a reference noise pattern that is spe-
cific for each sensor. Based on this pattern, additional
images are associated with their most likely source.
Noise extraction algorithms are a critical part of this ap-
proach, and [27] proposes some further enhancements.
The image capture pipeline is investigated in [11], where
different stages of the process are revealed to introduce
distinct artifacts. These artifacts can be used to design
more robust identification algorithms.
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Flash (solid state) storage has also been shown to
contain unique defects that can be fingerprinted. Both
coupling and timing effects are considered by [29], and
shown to yield feasible identification mechanisms. The
main difficulty of applying flash fingerprinting to the mo-
bile device domain is the consistent move towards using
eMMC-style flash chips [13], which hide much of the
raw data by building in complex wear-leveling logic.

There are some works that aim to fingerprint a device
via the web that go beyond the standard HTTP cookies.
Such works are based on software-related features rather
than hardware related. Ref. [18] showed that parame-
ters of system configuration such as screen resolution,
browser plugins and system fonts as well as the contents
of HTTP headers – User-Agent and Accept – allow to
fingerprint a device. Ref. [31] also showed that good de-
vice identification can also be achieved using the values
of User-Agent, IP address, cookies and login IDs. These
values can be achieved using standard logs of web traffic.

In the past several years it has been shown [8] that may
web sites identify a web client based on “super-cookies”.
These are identifier which are stored on the local host in
various persistent ways outside the control of a browser,
hence the browser can not impose that standard restric-
tion as of HTTP cookies.

Some works deal with remote hardware-based finger-
printing. The most well-known example is [26] which
showed how to measure a device’s clock skew using
ICMP and TCP traffic. The clock’s skew is shown as a
good device identifier. There is also a body of work that
propose remote fingerprinting methods based on wireless
traffic, for example, radiometric analysis of IEEE 802.11
transmitters [10], signal phase identification of bluetooth
transmitters [21], or timing analysis of 802.11 probe re-
quest frames [15].

There are a few recent works which independently
proposed methods to fingerprint accelerometers and
loudspeakers. In [16] is suggested to fingerprint a mo-
bile device using its accelerometer. The proposed finger-
printing method is based on accelerometer output while
the phone is vibrating (e.g. during an incoming call or
message). Then machine learning algorithms are used to
identify a phone based on general features extracted from
the accelerometer output, such as mean, std. dev., and
skewness. These features are indirectly based on the off-
set and sensitivity of the accelerometer. This method re-
quires about 30 seconds of accelerometer recording dur-
ing vibration, which may be hard to obtain if the phone
is not set to vibrating mode. Furthermore, the method
proposed in [16] is influenced by the surface on which
the phone lays and the case in which it is enclosed, while
our method is oblivious to these since we fingerprinting
the accelerometer while it is at rest.

Ref. [12] and [14] propose to fingerprint loudspeakers.

The schemes proposed in these works focus solely on
fingerprinting the loudspeakers; in contrast, our method
allows to fingerprinting the loudspeaker and microphone
combined, thus potentially allowing for more fingerprint
entropy. Moreover, our use of the device’s microphone
removes the need for an external microphone during the
fingerprinting process and allows for a more practical at-
tack scenario. Finally, our scheme relies on short syn-
thesized sounds that can be generated at the appropri-
ate timing. Ref. [14] relies on recording ring-tones and
therefore the attacker has to wait for an incoming call (or
other event) to trigger the sound.

8 Conclusions and future work

We presented a new approach to mobile device identifi-
cation which allows for devices to be recognized without
relying on soft identifiers (which may be lost after a de-
vice reset). Our fingerprinting method exploits sensor
calibration variations in the speaker-microphone system
and in the accelerometer. Accelerometer-based identifi-
cation is particularly noteworthy because it can be per-
formed by untrusted web code running within a mobile
browser. We hope that our results illustrate the poten-
tial risk of granting untrusted code access to seemingly
benign hardware.

This work raises several interesting open problems.
What other types of mobile hardware can be leveraged
for device fingerprinting? Can this be done using im-
perfections in the baseband processor? In other sen-
sors? How much entropy can be extracted overall and,
based on additional data from a larger set of identical de-
vices, can we obtain a high-confidence estimate of the
distributions of the measured calibration parameters? Is
there sufficient entropy in sensor-based fingerprinting to
generate a hardware-based cryptographic key? We hope
these questions can be answered by future work.

Notes

1Location 1 data was used as the training set in this case.
2The device we excluded was not misclassified in the first experi-

ment, so its exclusion did not contribute to the improved results.
3The results are similar (symmetric) if another location is omitted

from the training data instead.
4Earth’s gravity indeed varies a little depending on location, how-

ever even these small variations can be predicted.
5Note that due to the accelerometer defects we are measuring, it

will most likely not be exactly equal to g.
6For further details see [1].
7Containing a large random number—a unique ID.
8Unless the browser application exited and deleted the cookie; we

will ignore this type of scenario here: its presence will strictly degrade
our results, so the analysis we report here is conservative.
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A Availability

Mobile devices with compatible web browsers (for ex-
ample most iOS devices and many Android 4.0+ de-
vices) can be pointed at http://sensor-id.com/ to
have their Sz and Oz sensor parameters evaluated. Please
follow the instructions and prompts provided. After the
website measures your accelerometer parameters, you
will be presented with a chart such as the one in Fig-
ure 10.

The compiled Android application for measuring fre-
quency response ratios can be downloaded from http:

//sensor-id.com/audio/sensor-id-mic.apk. In
order to run this APK file, the user needs to enable “non-
market applications” in the Settings application, and then
proceed to install either via USB (e.g. via using the adb
install command) or through another supported mech-
anism such as a removable SD card. When you run the
app, make sure the phone is lying flat on a surface—
interference from cables or other objects under the phone
is often significant. When fingerprinting is complete, the
application appends the frequency responses at the seven
frequencies, as well as at their second, third, and fourth

Figure 10: Scatter plot of all data gathered, displayed to
the user after measurements have been submitted to the
server. The green dot depicts the user’s device finger-
print. Oz measurements map to the X coordinate, and Sz
measurements to the Y coordinate.

harmonics, to the file /sdcard/mic and writes out the
raw recorded samples to /sdcard/mic dump (there are
8000 samples at each of the seven frequencies, for a total
of 56000 integers, one per line).

B Estimating All Six Bias Parameters of
the Accelerometer

Using the single-axis (Z only) calibration method one
could theoretically estimate the sensor parameters in the
X and Y dimensions, however it is very unlikely that a
user will position the device on its narrow sides. An al-
ternative approach for estimating the bias parameters for
all three dimensions is to gather accelerometer measure-
ments at 6 different and arbitrary resting positions. Note
that in this approach although we need to gather mea-
surements for more resting positions we do not assume
anything about the device’s orientation at those positions.
We know that the true acceleration along the v dimension
is given by vt =

vm−Ov
Sv

. Therefore we have for each mea-
surement m the following equation:

(
xm −Ox

Sx

)2

+

(
ym −Oy

Sy

)2

+

(
zm −Oz

Sz

)2

= g2

In principle, six such equations (for six different rest-
ing positions) would have allowed us to calculate the six
unknown bias parameters. However, due to quantiza-
tion errors and other random noises the above equation
should be turned into an inequality of the following form:
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(
xm −Ox

Sx

)2

+

(
ym −Oy

Sy

)2

+

(
zm −Oz

Sz

)2

−g2 ≤ ε

where ε is some unknown measurement error. To find
the accelerometer deviation parameters in presence of
noise we collect multiple measurements x(i)m ,y(i)m ,z(i)m (as
many as it is practical to have) and solve the following
optimization problem

Minimize ∑i ε2
i

subject to

(
x(i)m −Ox

Sx

)2

+

(
y(i)m −Oy

Sy

)2

+

(
z(i)m −Oz

Sz

)2

−g2 = εi

where i is the measurement index.
This is not a convex problem in general (depending

on the measurements) and therefore we chose to use a
numerical gradient descent method to find the parameters
Ox, Oy, Oz, Sx, Sy, Sz that minimize the error. Assuming
we have a smart guess for the initial point and given the
constraints on the reasonable parameter values we expect
that solutions for different sample sets will all converge
to the same local minima. We take O3×1 = 0 and S3×1 =
1 as the initial point for the algorithm since these are the
ideal values from which the device can deviate by a small
fraction.

We apply this algorithm to multiple sets of measure-
ments for every device, and obtain labeled samples in a
6-dimensional space. To identify a device given a new set
of measurements we repeat the algorithm and obtain an
unlabeled sample. We then use nearest neighbor match-
ing (KNN) to associate the sample with a labeled clus-
ter. Cross-validation of KNN classification over this data
yielded a correct classification percentage of 81.3%.

B.1 Experiment: Lab Droids in 3D

We evaluated the algorithm first for 5 devices and then
for 16, performing both unsupervised clustering and su-
pervised classification. K-means clustering for the setup
of five devices resulted in a perfect identification of sam-
ples obtained from the same device. With 16 devices we
obtained good clustering, however we did observe some
errors. Supervised classification with 16 devices yields a
correct classification percentage in 81.25% of the cases,
indicating that this method could be a significant contri-
bution to the overall identification process in combina-
tion with the other methods.

C Difficulties in Identification Using Some
Sensors

In this section we briefly discuss the difficulties we had
in using certain sensors listed in Table 1 for device fin-
gerprinting.

Gyroscope: Measuring the offset and sensitivity of the
gyroscope would require subjecting the device to con-
stant angular velocity rotation at different speeds—an ex-
periment that is difficult to carry out even in a lab.

Magnetometer: We carried out some magnetometer
experiments which convinced us that although compass
readings are a possible source of identification data, the
peculiarities of the sensor make practical use next to im-
possible. Consider for example Figure 11: while sensi-
tivity and offset are evident from the geometry of mag-
netic field measurements in multiple directions, there are
also clear memory effects which can disrupt the esti-
mates. In addition, the variability of the magnetic field
can be sometimes significant (e.g. near metallic objects),
and sometimes subtle, making corrections difficult and
error-prone.

Figure 11: Compass (magnetometer) readings taken by
placing two different devices (in blue and orange) at the
same location on a flat surface, in a variety of orienta-
tions. The oval shapes are created due to the varying ori-
entations of the device (with a stable Z component—note
that the same device sometimes produces a smaller oval,
consistent with a varying Z value across runs, even at
the same location). Offset is evident from the offset cen-
ters of the ovals, and sensitivity is reflected in the ovals’
shapes. Different runs even at the same physical loca-
tion may produce different results, which demonstrates
memory effects that are difficult to correct for.

Light: Light sensors only provide erratic measure-
ments which are subject to noise due to partial obstruc-
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tion of the sensor; thus, light measurements are difficult
to put in a context that allows for estimation of the im-
perfections.

GPS: A GPS receiver triangulates the location of a
phone by calculating its distance to at least 3 GPS satel-
lites. The distances are calculated by measuring the time
a signal travels from a satellite to the GPS receiver. The
travel time is measured using an inaccurate clock built
into the GPS receiver. Previous work [26] has shown
that a clock’s skew can identify the clock. However,
modern GPS receivers utilize a 4th satellite measurement
which allows to take this bias into account. Therefore,
the clock’s bias does not affect the calculated location.

Touch screen: The touch screen sensor is mounted
over the phone’s display. Inaccurate assembly process
may cause the touch screen to be misaligned with the dis-
play. This may cause the user to erroneously tap on loca-
tions adjacent to the intended target. This misalignment
may serve for identification. However, since it is usually
very small and mostly goes unnoticed by the user, it is
difficult to measure it. One possible direction to measure
it would be, for example, to record the exact locations of
the user’s taps on the keyboard display. Averaging the
tap locations for each key and comparing it against the
actual key’s location at the keyboard display may allow
one to calculate the misalignment. Nonetheless, we ex-
pect this method to be highly dependent on the user as
much as the touch screen misalignment.

Camera: There are a few works that deal with cam-
era identification using the pixels’ bias. The output gain
of each pixel is a linear function of the actual intensity
of light hitting that pixel. This linear bias is commonly
called pattern noise; [28] proposes a method to determine
a camera’s reference pattern noise using a 300 pictures
taken by that camera. This serves as a unique fingerprint
for the camera. It is shown that this enables to associate
with good probability a new picture with the camera that
took it. The study was done using 9 cameras. How-
ever, no effort was done to assess the expected number
of cameras that can be distinguished using this method,
and what is more, most of the cameras differ in either
model or manufacturer which tends to make identifica-
tion easier (some evidence is presented however that the
results can carry over to identical cameras as well).
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