
Smartphone Audio Acquisition and
Synchronization Using an Acoustic

Beacon

With Application to Beamforming

Roy Smeding (4082192)

Sjoerd Bosma (4088379)
Supervisor: dr. Jorge Martínez Castañeda

Abstract

A time-domain (TD) and a frequency-domain (FD) method for time offset (TO) compensation between

received audio data are presented and implemented on Android smartphones and a processing computer.

Simulations show the TD method is superior in almost all applications. Real-life experiments show the TD

synchronization error is below 6 samples. A Java and MATLAB server application and an Android appli-

cation are presented to acquire audio and orientation data with the intent of applying it to beamforming

algorithms. Orientation data from Android smartphones is shown to be inconsistent among devices and is

therefore inadequate for beamforming applications. Sampling rate offset (SRO) on Android smartphones is

characterized by analyzing long duration audio recordings from the devices. Future work could include an

SRO compensation algorithm, self-localization of the smartphones and distributed synchronization.

Keywords – Acoustic synchronization, sampling rate offset, smartphone orientation, ad-hoc

beamforming

July 4, 2015

i

Acknowledgments

Succesful completion of this project would never have been possible without the excellent guidance of our

supervisor, dr. Jorge Martínez Castañeda. We would like to thank him for his support, advice and guidance.

Furthermore, professor Bastiaan Kleijn of the Delft University of Technology has been very helpful with his

insights. Henry den Bok at the Faculty of Applied Sciences was very helpful in preparing measurement setups

and dr. Jan Skoglund at Google inspired us to get the most out of this project. Professor Koen Bertels was of

great help in compiling our accompanying business plan. It was a pleasure working together with our fellow

students Erik, Niels, Rosalie and Tim on the encompassing system.

Finally, we would like to thank dr. Ioan Lager for organizing the Bachelor graduation project this year.

ROY SMEDING

SJOERD BOSMA

Delft University of Technology

ii

List of figures

1 Typical usage scenario for the beamforming system. 2
2 Global and local overview of the beamforming system. 3

3 TO and SRO correction stages. 6
4 Measurement setup used for SRO measurements. 8
5 SRO measurement setup in the anechoic chamber. 9
6 SRO measurement result. 10
7 TD and FD synchronization simulation results. 13

8 Android Activity user interface. 16
9 Server and Android app FSM. 19
10 Measurement of smartphone orientations. 21

11 Measurement results of synchronization. 24

12 Complete orientation measurement results. 30
13 Full TD and FD synchronization simulation results. 31
14 Complete SRO measurement results. 32
15 Synchronization in a real-world scenario. 33

16 Global coordinate system for smartphones. 34

iii

Table of contents

List of figures ii

I Introduction 1
I.1 Problem formulation . 2
I.2 Definitions and symbols . 2
I.3 Requirements . 3

II Synchronization 5
II.1 Problem formulation . 5
II.2 State of the art . 6
II.3 SRO characterization . 7
II.4 Algorithm . 10
II.5 Simulation . 12

III System implementation 15
III.1 State of the art . 15
III.2 Android app . 16
III.3 MATLAB implementation . 17
III.4 System performance . 19
III.5 Orientation measurement . 20

IV System test 23
IV.1 Set-up . 23
IV.2 Results . 24

V Discussion and recommendations 25
V.1 Discussion . 25
V.2 Future work . 26
V.3 Conclusion . 27

Bibliography 28

A Full simulation and experiment results 30
A.I Orientation measurements . 30
A.II Time offset simulation . 31
A.III Sampling rate offset measurements . 32
A.IV Real-life synchronization results . 33

B Global coordinate system used by smartphone 34

1

Chapter I

Introduction

In many larger businesses, conference calls are used to communicate between different teams, or with other

teams in different locations. The systems for these conference calls are generally complicated to configure,

and once configured it can still be difficult to make every participant heard. One potential solution is to

use a network of smartphones, which most conference call participants already possess. Each smartphone

has at least one microphone, meaning a network of these microphones can be processed as a microphone

array. As a result, expensive conferencing hardware can be replaced by a network of smartphones running

an application. This smartphone microphone array could also be used for other applications, such as speaker

identification and improving the accuracy of speech recognition systems.

In general, the applications presented above rely on spatial filtering of acoustic data. In other words, they

strive to enhance speech by taking into account the locations of the microphones and sources. This technique

is commonly known as beamforming [1]. In these examples, the smartphones can be seen as ad-hoc arrays

of wireless acoustic sensors [2]. Further enhancement of audio may be accomplished by incorporating mi-

crophone directivities into the beamforming algorithms [3,4]. Beamforming with ad-hoc microphone arrays

requires known locations of microphones [5] and synchronization of sensor data [6, 7]. Using directivities

further requires the orientation of the smartphones to be known [2].

Acoustic self-localization of smartphones is possible, though with limited accuracy [6, 8]. Using external

loudspeakers, sub-5 cm variances of positioning algorithms have been realized on a variety of wireless sensors

[9]. Synchronization of the microphone data can be achieved using correlation processing for both time

offset [10, 11] and sampling rate offset [7, 12] correction. Orientation estimates may be directly obtained

from Android smartphones, but its accuracy is severely limited [13].

Solutions to each individual challenge stated above are described in the literature, but no working beam-

forming system including directivities using smartphone microphones is known to the authors. This work, in

conjunction with the work of Van Wijngaarden and Wouters [14] and Brinkman and De Rooij [15], strives to

form the basis of such a system.

The rest of this document is structured as follows: the current chapter further specifies the exact problem

addressed in this work, followed by a list of requirements on the resulting system. Chapter II details the

challenges faced in synchronizing the audio signals, along with solutions for these challenges and evaluation

of these solutions. Chapter III details the data acquisition system that was built, and gives quantitative per-

formance results for orientation measurement in the context of the target application. Chapter IV describes

experiments done on the resulting subsystem. Finally, the document is concluded by a discussion of the

achieved performance, as well as recommendations for future work, in chapter V.

Chapter I. Introduction 2

I.1 Problem formulation

The aim of the complete system is to perform beamforming on smartphone microphone signals. A diagram

of an example usage scenario is shown in Fig. 1. A number of smartphones are located on a table in a

normal office environment. Located around the table are a number of desired audio sources (e.g. people

speaking) and noise sources (e.g. background conversation or traffic outside). The position of all sources and

microphones is assumed known. By combining these recordings, taking into account the location information,

an output audio signal is produced that ideally has better perceived quality than the individual microphone

signals. This work specifically focuses on the overall signal acquisition and audio synchronization aspects of

the system. Application of the actual beamforming algorithms is left to Van Wijngaarden and Wouters [14]
who also incorporate work done on microphone directivity measurements by Brinkman and De Rooij [15]
(see Fig. 2a).

Fig. 1. Typical usage scenario for the beamforming system. Several smartphones are positioned
on a table to capture desired audio sources, while rejecting sources of noise.

I.1.1 Scope

This work describes a complete system for sensor data acquisition, taking the form of an Android smartphone

application and a MATLAB and Java processing server. An overview of the components of this system is shown

in Fig. 2b. The choices for these platforms will be outlined in sections III.2 and III.3 respectively.

This work will also look at the state of the art of both orientation estimation and localization and make

some recommendations for future work. It was chosen not to incorporate this functionality in the application,

but instead assume the smartphone orientations and positions are known because current localization and

orientation measurements do not give sufficient accuracy (see sections III.1.2 and III.1.2).

The following section details the definitions and mathematical symbols used in the rest of this work. A

set of requirements for this subsystem follows in section I.3.

I.2 Definitions and symbols

Throughout the rest of this document, some shorthand form of long product names will be used. Below, these

are enumerated and explained. The shorthand forms are also introduced.

Chapter I. Introduction 3

Android™ platform Smartphone operating system – abbreviated as Android.

Google Nexus 5™ Smartphones used in this work – abbreviated as Nexus 5.

MATLAB Student R2014b Numerical computing environment – abbreviated as MATLAB.

Java® Programming language maintained by Oracle Corporation – abbreviated as Java.

I.2.1 Mathematical symbols

The following mathematical symbols are used throughout this document:

a, A time-domain and discrete-frequency-domain vector, respectively

F the discrete Fourier transform (DFT) operator, i.e. F{ f [t]}= F [2πk/N]c the right-side element is the DFT of the left-side element, i.e. f [t] c F [2πk/N].

a ? b the cross correlation between a and b.

a ∗ b the convolution of a and b.

a · b the product of a and b.

a� b the element-wise multiplication of a and b.

a the complex conjugate of a.

0.1 a recurring decimal, i.e. 0.111 . . .

â an estimate for a.

acquisition sync beamforming output

directivities

(a) A global overview of the beamforming system structure. This work describes the stages high-
lighted in red.

(b) A closer look at the general outline of the system described in this work.

Fig. 2. Global and local overview of the beamforming system.

I.3 Requirements

A set of requirements has been established before the subsystem was implemented, in order to judge if the

finished subsystem complies with expectations. In the rest of this chapter, system will refer to the complete,

integrated system of smartphones and processing computer.

Chapter I. Introduction 4

I.3.1 Requirements concerning the intended use

Requirements concerning the Android application.

[1] The Android application must have an easy-to-use graphical interface.
[2] The Android application must connect using TCP/IP to a running server that will accept the recorded

audio data.
[3] The Android application must stream the data acquired from its microphone after receiving the corre-

sponding signal from the central computer.
[4] The Android application must stop streaming the recorded sound after receiving a stop signal.
[5] The Android application must adhere strictly to the defined communication protocol with the central

computer.

Requirements concerning the MATLAB application.

[1] The MATLAB program must accept incoming network connections from smartphones so data can be

transmitted between them.
[2] The MATLAB program must be capable of handling 8 simultaneous phone connections.
[3] The MATLAB program must adhere strictly to the defined communication protocol with the phones.
[4] The MATLAB program must provide the beamforming algorithms with discrete, synchronized ‘blocks’

with predefined size of sampled audio data from all phones.
[5] The MATLAB program must also provide a unique phone identifier to the beamforming algorithms along

with the aforementioned audio data.

I.3.2 Requirements concerning the system

[1] The system must be usable in a typical office environment (e.g. a meeting room).
[2] The Android application must run on Nexus 5 smartphones.
[3] The computer program must run on computers running MATLAB version R2014b with networking

capability.

I.3.3 Requirements regarding the production

[1] The Android application will be developed using version 24.2 of the Android SDK1.
[2] The MATLAB code will be developed using MATLAB version R2014b.
[3] Java applications will be developed using version 1.7.0 of the JDK2.

1Software Development Kit
2Java Development Kit.

5

Chapter II

Synchronization

In traditional multichannel analog-to-digital converters (ADCs) multiple sources are sampled using the same

reference clock signal. As a result, temporal and frequency synchronization between the channels is guaran-

teed. However, when audio signals are received over a (wireless) network of independent ADCs, the samples

are not synchronized in either time or frequency. For the beamforming algorithms supplied with data by

this system, it is imperative that the signals are synchronized [12]. As a result, one or more synchronization

algorithms are needed. This chapter describes these problems in a more systematic manner, explores the lit-

erature for solutions and describes the algorithms used to accomplish synchronization, concluding with both

simulated and experimental performance results for these algorithms.

II.1 Problem formulation

Two distinct aspects of the received signal samples require synchronization. The first is a fixed time offset

between received signals, caused by network lag and latency in handling the commands sent from the central

computer. The second is due to frequency deviations from the intended sampling rate between different

analog-to-digital converters.

II.1.1 Time offset

Formally, the time offset (TO) between two receivers may be described by the following formula [16]:

∆t =∆tsend +∆taccess +∆tprop +∆treceive (II–1)

In this case, ∆tsend and ∆taccess are equal for all smartphones because they consist of the shared loud-

speaker and the acoustic channel which is common to all receivers. ∆treceive is prone to the random variation

associated with audio recording, wireless networking, and processing and ∆tprop is due to the propagation

time of sound in air. To correct for TO, the propagation delay and reception delay must both be known;

in the first step of synchronization, the sum ∆tprop +∆treceive is compensated as exemplified in Fig. 3a-3b.

In a second step the propagation delay is added back to the sampled signal, effectively compensating each

smartphone for its expected time-difference of arrival (TDOA). This process is illustrated in Fig. 3c-3d.

Chapter II. Synchronization 6

(a) Both TO and SRO are present in the
measured microphone samples.

(b) TO eliminated, SRO is still present.

(c) TO and SRO have now been elim-
inated, fully synchronizing the sig-
nals.

(d) Samples corrected for TDOA from
loudspeaker to microphone loca-
tion.

Fig. 3. Example of TO and SRO correction stages.

II.1.2 Sampling rate offset

The second synchronization requirement is due to clock skew in the individual ADCs used to record audio.

Since the ADCs used in smartphones are not typically designed for high-precision sampling, a sampling rate

offset (SRO) up to even 10 Hz may be present [17]. The detrimental influence of sampling rate offset on

signal processing performance has been demonstrated by Cherkassky and Gannot [12].
If left uncompensated, sampling rate offset results in a time offset that changes with time. In order to

correct for this, the sample rate offset must be estimated, after which the microphone signals can be resampled

to conform to a precise global sample rate [7].

The following section describes some possible solutions to these two synchronization problems.

II.2 State of the art

II.2.1 Time offset correction

The Network Time Protocol (NTP) is used worldwide for clock synchronization, but generally has errors on

the order of tens of milliseconds, too much for signal processing applications. The Global Positioning System

Chapter II. Synchronization 7

(GPS) offers superior time stamp capability, in the order of 340 ns but is unreliable indoors [11]. Thus, for

the purposes of this work, methods relying on an external clock were deemed inappropriate.

Ballew, Kuzmanovic and Lee have explored the fusion of audio recordings of concerts made by smart-

phones [18]. Of special interest for this work is the chosen synchronization algorithm, which uses cross

correlation between different audio recordings to determine relative time offset of recorded sounds. How-

ever, this cross correlation is not performed with the intent of real-time synchronization but is performed

in post-processing. As shown by Knapp and Carter [10], the maximum value of the cross correlation is a

maximum-likelihood estimator for the time delay between two input signals.

II.2.2 Sampling rate offset correction

Two methods for sampling rate offset correction were found in the literature, both relying on correlation

processing. The first, proposed by Markovich-Golan, Gannot and Cohen [7] is based on the drift of the

cross spectrum of two signals sampled at different sampling rates. The second, by Cherkassky and Gannot

[12], derives an estimator for the relative sample rate offset between two signals based on a cross-wavelet

transform. Both of these approaches are independent of resampling implementations and thus may use a

range of resampling methods, including Lagrange polynomial interpolation [7, 17] and spline interpolation

[12].

II.3 SRO characterization

An attempt has been made to characterize the degree of sampling rate offset in the used smartphones. Based

on the literature (see section II.1.2), it is expected that the offset is quite low compared to the used sam-

pling rate. Therefore, this work has focused on providing quantitative measurements of sample rate offset.

Implementation and comparison of correction algorithms was left as a topic of future research.

II.3.1 Measurement setup

In order to measure SRO, the anechoic chamber at the Delft University of Technology was set up with three

identical Nexus 5 smartphones streaming audio to a computer at a nominal sampling frequency of 48 kHz.

The audio source consisted of a loudspeaker connected to a high-fidelity audio interface, RME Fireface 800.

The measurement setup is depicted in Fig. 4 and a picture of the actual setup is shown in Fig. 5.

The audio interface produced an hour-long continuous sine waveform of 15 kHz which was recorded by

the smartphones and sent to the computer, with the intent of computing the sample rate offset from the ideal

48 kHz value.

As will become clear in the next section, this offset is better detected when a higher-frequency sine wave is

used. However, if the frequency is chosen too high, the microphone gain is reduced to nearly zero. Therefore,

15 kHz was chosen to strike a balance between high frequency and and good microphone gain. The micro-

phone response was taken from the results of Gaubitch, Martinez, Kleijn and Heusdens [2] and preliminary

results from Brinkman and De Rooij [15] for Nexus 5 microphone directivities.

II.3.2 SRO estimation

The resolution at which the frequency can be estimated can be calculated from the properties of the discrete

Fourier transform (DFT). Let N be the number of time-domain samples in the series s[t] , t ∈ {0,1, . . . N −1}.

Chapter II. Synchronization 8

Fig. 4. Schematic representation of the measurement setup used for SRO measurements. The
figure shows the anechoic chamber at the Delft University of Technology with three smart-
phones and a loudspeaker. Not depicted: computer connected via Wi-Fi to receive the sent
audio signals.

The DFT is then the frequency-domain representation of the periodically extended discrete-time signal s[t],
and is given by S[2πk/N], k ∈ {0, 1 . . . N − 1}. Thus, we also have N samples in the frequency domain [19,

p. 421-422]. Recalling that the DFT consists of frequencies from − fs/2 to fs/2 (assuming the time-domain

signal was bandlimited below fs/2), the frequency resolution can be calculated from ∆ f = fs/N . But since

N = T fs, ∆ f = 1/T where T represents the duration in seconds of the sampled signal s[t].

It can be seen that a short DFT window provides fine time resolution but coarse frequency resolution,

and conversely a long DFT window provides fine-grained frequency resolution at the expense of coarse time

resolution. Put differently, a long DFT window provides more detailed information about the frequencies

present in a signal, but provides less detail about when these frequencies are present in time.

For these experiments, a sampling rate of 48 kHz was chosen as this is the highest widely supported sam-

pling rate on Android smartphones. Window lengths varying from 5 minutes (∆ f = 3.3 mHz) to 30 seconds

(∆ f = 33 mHz) were chosen for performing the DFT.

Once the recorded frequency is known, the SRO can be determined:

SRO=

�

fplay − fdetected

�

· fs

fplay

where fplay, fdetected, fs indicate played audio frequency, detected audio frequency from the recording and

sampling frequency, respectively.

II.3.3 Results

The SRO for these smartphones is lower than predicted by the literature, in the order of 0.2 Hz (Fig. 6) and

does not change rapidly with time. Full DFT plots for all window lengths may be found in Fig. 14 in Appendix

Chapter II. Synchronization 9

Fig. 5. An actual picture of the setup in the anechoic chamber. The three phones are resting on
a piece of foam in the top half of the image, with the speaker visible in the lower right.

A and a discussion of the results in section V.1.1.

Chapter II. Synchronization 10

(a) 30 second DFT window, ∆ f = 33 mHz. (b) Five minute DFT window, ∆ f = 3.3 mHz

Fig. 6. Sampling rate offset measurements for two DFT window lengths. A larger DFT window
gives a higher frequency resolution ∆ f but lower time resolution.

II.4 Algorithm

This section presents the two approaches for time offset correction that were implemented for this work. Both

of these approaches rely on the transmission of a ‘beacon’ signal with known properties, then correlating the

received signals with this beacon. This technique is widely used in computing acoustic impulse responses

[20,21], and is a maximum-likelihood estimator for the delay between two sequences [10].

II.4.1 Time offset correction

Beacon signal

In order to robustly estimate the time delay using cross correlation, it is desirable for the beacon signal to

have four properties: first, the correlation operation should yield a prominent maximum when performed

on the beacon signal, even when noise is introduced into the system. Second, the beacon should emit a

wideband signal such that e.g. a resonant dip in acoustic frequency response will not disproportionately

affect the synchronization procedure. Third, a long time support for the beacon lessens the effect of transient

disturbances on the synchronization system. Finally, a low ratio of peak-to-average power is desirable, as it

lowers demands on the audio playback and recording systems.

For this work, the decision was made to use a maximum length sequence (MLS). A maximum length

sequence is a waveform generated by a linear feedback shift register (LFSR) designed to produce the longest

possible sequence for a given amount of state information: with N bits of state, it yields a sequence of length

2N − 1. This sequence fits all four criteria listed above: its autocorrelation approaches the Kronecker delta

function, it is spectrally flat in a wide frequency range (restricted by the signal’s finite length and sample rate),

the signal has configurable time support and finally a low ratio of peak-to-average power [21].

These properties of MLS make it a good candidate for (cross-)correlation processing, which is described

below.

Chapter II. Synchronization 11

Cross correlation

Both the time- and frequency-domain synchronization algorithms rely on the operation of cross correlation.

For discrete-time, real-valued signals, cross correlation is defined as follows [22, p. 228]:

(s ? p)[n] = s[−n] ∗ p =
∞
∑

m=−∞
s[m] · p[m+ n] (II–2)

If p and s are the same maximum length sequence, this cross correlation approaches a delta function [21]:

(s ? p)[n] = (p ? p)[n]≈ c ·δ[n]

where c is a scaling factor dependent on the MLS amplitude and length.

If s is now convolved with an impulse response h, the associativity and commutativity properties of con-

volution [22, p. 169] can be used to show that the cross correlation approaches that same response:

((p ∗ h) ? p) [n] = (p ∗ h) ∗ h[−n] = p[−n] ∗ p ∗ h ≈ c ·δ ∗ h = c · h

To implement both algorithms, a pulse signal p is first generated. This pulse is played back over a speaker

to the phones, where each phone i records an acquired signal si . Each acquired signal is then the original

pulse p, convolved with an impulse response hi . This hi represents the effects of the audio playback system,

the room acoustics, the microphone response and the unsynchronized recording time offset:

si = p ∗ hi = p ∗ hspeaker ∗ hi,acoustic ∗ hi,mic ∗ hi,delay

It is assumed that each of the speaker and microphone impulse responses and the room impulse responses

hi consist of damped LTI systems. Although this assumption does not model all characteristics of room impulse

responses, it is a common simplifying assumption in other literature [23].

The LTI model predicts a prominent initial peak in hi . The acoustic impulse response is modelled with

a propagation delay tp, as well as damped repetitions resulting from surfaces in the room reflecting sound

waves. The delay impulse response hi,delay is assumed to contain only a time delay of ∆treceive, as explained

in section II.1.

Based on these assumptions, the expected compound, time-domain impulse response consists of a promi-

nent global maximum, and its scaled repetitions, smeared by the speaker and microphone impulse responses,

and delayed by the combined propagation delay and time delay.

Time-domain cross correlation

The first implemented algorithm performs a time-domain cross correlation of p and si to obtain a signal ci as

in equation II–2. This signal constitutes an estimate of the total system impulse response hi , and is expected

to contain the same delayed global maximum described above. This maximum is located in each source signal

ci by a search, and its index τ̂ is used as an estimate of the total time delay tp + td :

τ̂= arg max
n

(p ? si)[n] (II–3)

Frequency-domain cross correlation

In addition, a similar algorithm was implemented in the frequency domain to evaluate potential benefits.

Chapter II. Synchronization 12

First, both the pulse p and each recorded signal si are transformed by means of a fast Fourier transform

(FFT) to yield signals P and Si in the discrete-frequency domain. Next, these signals are cross correlated in

the frequency domain. In the discrete-frequency domain, cross correlation can be written as an element-wise

multiplication of the arguments [24, p. 310]:

si ? p = si[−n] ∗ p c F{si ? p}= S� P (II–4)

Since a time-domain delay τ maps to a linear phase shift −2πkτ/N in the discrete-frequency domain,

the phase of the resultant signal consists of this frequency-dependent phase shift plus the phase of the input

signal:

f [t −τ] c e jωτF{ f [t]} ⇒ arg(F{ f [t −τ]}) = arg (F{ f [t]})−
2πk
N

τ (II–5)

where 2πk/N , k ∈ {0, 1 . . . , N − 1} are the discrete frequencies. As a result, it is possible to estimate

the delay τ by estimating the linear dependence of the phase shift on the frequency, so long as the phase

contribution of the room impulse response, arg (F{ f [t]}), is low compared to the delay-induced phase shift.

Therefore, the frequency-domain algorithm computes the phase angle of the frequency-domain cross cor-

relation (equation II–4). Since this angle is confined to the interval [−π,π], it is first ‘unwrapped’ around

each discontinuity to provide a linear phase φ[n] as function of discrete frequencies. Then, the algorithm

attempts a least-squares fit of a line φ̂[n] = nΓ̂ + Θ̂. Γ is then a measure for linear phase shift is computed

as a slope in radians per FFT index. Finally, it is divided by 2π and multiplied by the FFT size L, to obtain

corresponding time shift τ̂ measured in samples:

τ̂= Γ̂ ·
L

2π

II.5 Simulation

To characterize the performance of just the synchronization subsystem, a simulation was constructed that

measures the error of the estimate τ̂ in different scenarios. This simulation is performed for different values

of synchronization delay, reverberation and signal-to-noise ratio.

II.5.1 Scope and implementation

First, the simulation generates the MLS signal that is used for all simulations. Based on this, a number of

microphone signals are generated. Each signal is convolved by K different FIR filters, each representing a

room impulse response for a 5 by 6 by 2.5 metre cuboid-shaped room with a variable wall acoustic reflection

coefficient1. Each of these signals is delayed by L different delays, yielding a K × L set of convolved and

delayed sample signals.

Then, for each delay and reflection value, M different signal-to-noise ratios are evaluated. For each SNR,

N realizations of Gaussian noise at that magnitude are generated so that, in total, K × L ×M × N simulation

runs were performed. This noise realization is added to the pre-generated sample signal and both the time-

and frequency-domain correlation algorithms described above are run on this noisy signal. The difference

between the actual inserted delay and the estimated delay is computed and stored in a result vector.

1These FIR filters were computed by the rir.m file available from the MATLAB Central File Exchange at https://www.mathworks.
com/matlabcentral/fileexchange/5116-room-impulse-response-generator/content/rir.m

https://www.mathworks.com/matlabcentral/fileexchange/5116-room-impulse-response-generator/content/rir.m
https://www.mathworks.com/matlabcentral/fileexchange/5116-room-impulse-response-generator/content/rir.m

Chapter II. Synchronization 13

The parameters used for this simulation are as follows: K = 10 different wall reflection coefficients from

0 to 1 (unitless), L = 10 different delays from 0 s to 0.2 s, M = 20 different noise signal-to-noise ratios from

60 dB to −34 dB and N = 100 noise realizations for each parameter combination.

II.5.2 Expected results

Due to the favorable properties of the beacon signal described in II.4.1, it is expected that the time-domain

algorithm will be robust in the face of introduced noise. As this algorithm relies on finding a global maximum

in the impulse response, however, it is suspected that for high values of wall reflectance, combined with

multipath interference, a maximum in the impulse response might arise that does not correspond to the direct

acoustic path. This would lead to a large estimation error beyond a certain critical wall reflection coefficient.

In addition, the time-domain algorithm is only accurate to integer samples, leading to an expected round-off

error of less than one sample.

The frequency-domain algorithm is expected to provide sub-sample accuracy due to its least-squares es-

timation of the delay in the frequency domain. However, performance is reliant on low phase contribution

of the acoustic impulse response compared to the contribution of the delay that must be estimated (equation

II–5). It is unknown whether this assumption will hold throughout the simulation scenarios.

It is not expected that the performance of either algorithm will depend on the amount of introduced delay.

II.5.3 Results

The reflection coefficient has no influence on the performance of the time-domain algorithm, but the frequency-

domain algorithm is crippled at reflection values of 0.8 or higher (Fig. 7a). The frequency-domain algorithm

is much more susceptible to noise than the time-domain algorithm (Fig. 7b). Neither algorithm is affected

by the amount of delay (Fig. 13c in Appendix A.II). A discussion of the results may be found in section V.1.3.

(a) Delay estimation error as a function of wall reflection. (b) Delay estimation error as a function of noise power

Fig. 7. Simulated results for TD and FD synchronization algorithm.

Chapter II. Synchronization 14

15

Chapter III

System implementation

This chapter describes the implementation details of the audio acquisition subsystem. The purpose of this

subsystem is to acquire the microphone audio from the smartphones and bring it to a centralized location

where it can be processed and combined.

As was explained in chapter I, the subsystem in question consists of two parts. The first is a server appli-

cation that accepts audio data from a number of smartphones, synchronizes it, then makes it available to the

subsequent beamforming system. The second is an Android application that connects to this server applica-

tion, after which it can be instructed to start streaming audio data captured from its microphone(s), as well

as orientation data that can be used in the audio processing algorithms.

III.1 State of the art

III.1.1 Android OS

The Android operating system is the most popular mobile platform globally, with a market share of nearly

80% at the time of writing [25]. Android is not a real-time operating system (RTOS) [26], and thus has no

timing guarantees on task completion. However, Moore’s Law scaling has led to huge performance boosts in

computers in general and smartphones in particular in the last five years which might mean smartphones are

already fast enough for real-time audio streaming. Since Google provides a development kit in the form of

the SDK [27], performance issues can easily be assessed on the used hardware. Furthermore, if performance

remains an issue, Android has a Native Development Kit available to access low-level functionality in C or

C++ [28]. Android native development may have performance increases, but is not recommended as a

starting point for general-purpose applications [29].

III.1.2 Smartphone localization

While necessary for synchronization, the smartphone locations are also required to perform beamforming

and calculate directivities of the microphones. There are several ways of localization for smartphones: GSM

multilateration and GPS sensors use hardware supported by a broad range of smartphone models. GSM based

localization is accurate up to 5 meters indoors or 75 meters outdoors [30] while GPS typically does not work

indoors [11]. A solution for indoor acoustic self-localization on smartphones is discussed by Henneke and

Fink, who achieve root-mean-squared errors of 6 cm based on an array with 40 cm diameter [8].

Chapter III. System implementation 16

III.1.3 Orientation

For gain calculation from directivity measurements, the orientation of the microphone is needed as an input.

Smartphones typically have two sensors to measure orientation relative to the Earth: a compass and an

accelerometer [31]. These measurements provide an azimuth, pitch and roll angle, defined in Fig. B. Even

though the raw output obtained when reading these sensors on Android is inaccurate, an extended Kalman

filter (EKF) may be applied to correct some noise, leading to an error of around 10 degrees [13]. As the

measurement setup described in [13] is not necessarily representative of the usage scenario covered in this

work, it was decided to evaluate the performance of Android’s orientation estimation functionality in a more

representative environment.

III.2 Android app

For acquiring the microphone signals, as well as auxiliary data such as the smartphone orientation, a smart-

phone application (or ‘app’) was developed on the Android platform.

In the context of the Android Application Programming Interface1, this application consists of two parts.

The first is an Activity, which is started by the user and can be interacted with using the phone’s display, and

the second is a Service, which runs independently from the Activity so that its operation can continue if the

phone’s display is off or another Activity has focus.

A screenshot of the Activity is shown in Fig. 8. It shows the phone ID as sent along when connecting to the

MATLAB server, and provides fields for setting the hostname and port of that server. After this information

has been entered, the user can press the ‘Start service’ button to start the Service in the background, and the

‘Stop service’ button to terminate it again.

Fig. 8. Partial screenshot of the Activity user interface

The Service consists of four separate classes. There is a RecordService that provides the main Service

seen by the Android OS. It handles start and stop requests from the Activity or the OS itself, as well as some

convenience methods for notifying the user and interacting with the Android user interface. The Service sets

itself up as a so-called ‘foreground service’, which implies that it is a purposefully started activity that should

take priority over background processes when the system is low on resources.

The bulk of the application is distributed over three threads started by this Service. The NetworkInter-

faceThread handles the connection to the MATLAB server and loops to receive new messages, as well as

sending messages generated by the other threads. As there is only one connection to the server, it was de-

cided to use Java’s normal blocking socket system, meaning the thread blocks (and other threads can be run)

while no new data has been received.

1The Android Application Programming Interface (or ‘API’) is referenced throughout this section. Documentation for this API is
available on-line at https://developer.android.com/reference/packages.html.

https://developer.android.com/reference/packages.html

Chapter III. System implementation 17

The NetworkInterfaceThread follows the same state machine described in section III.3.1 for the MATLAB

server. When the thread is started, its state is SETUP. When it has received a packet containing the audio

settings for this session, it transmits an acknowledgement packet and changes state to IDLE. From this point

on, it will process a command to start streaming by going into the STREAMING state, at which point it launches

an AudioThread to acquire data from the on-board microphone. During both the IDLE and STREAMING states,

an OrientationThread is run to acquire orientation data, which is also transferred to the MATLAB server.

The AudioThread uses the Android AudioRecord API to initialize the device microphone. As the Android API

defines a number of different audio sources meant for different applications 2, it accepts an input argument

specifying the audio source to use as a byte. Once the audio source has been successfully initialized, the thread

continuously does a blocking read from the audio device into a buffer of its own. Once it has enough samples

to transmit a full block (of the length sent by the server), it calls a method in the NetworkInterfaceThread to

initiate this transmission.

The OrientationThread uses the Android SensorManager API to request access to the device magnetometer

and accelerometer. The magnetometer produces a vector in the direction of the local magnetic field, and the

accelerometer produces a vector in the direction of the so-called ‘proper acceleration’, taking into account the

balance of gravitational force and restoration force of the table surface. As such, the magnetometer should

produce a vector that points north, and the accelerometer should, at rest, produce a vector that points down.

These vectors are then processed using Android’s provided SensorManager.getRotationMatrix to yield a

rotation and inclination matrix. These matrices represent the transformation from the device coordinate

system (in which the accelerometer and magnetometer measure) to a global coordinate system where X

points east, Y points towards magnetic North, and Z points towards the ground. In Appendix B Fig. 16, this

coordinate system is shown graphically. Finally, the SensorManager.getOrientation method is then called on

this matrix to express this transformation in an azimuth, pitch and roll angle that can be sent to the server.

III.3 MATLAB implementation

The possibility to call compiled Java .class files from within MATLAB can be used to leverage Java’s asyn-

chronous networking capabilities from within a MATLAB script. In this section, the implemented Java/MATLAB

host application will be detailed and design choices will be explained.

The choice for MATLAB was made based on the ease of prototyping, prior experience and interconnections

with the subsystem built by van Wijngaarden and Wouters [14]. Furthermore, compiled Java .class files

can be called from MATLAB to extend default MATLAB functionality.

Although MATLAB was found to provide a suitable environment for developing this application, it was

found that interoperation between Java code and MATLAB itself is not entirely trivial. The largest problem is

that the ability to call back arbitrary MATLAB functions from Java, while present, is not officially supported

or documented3. Using this functionality is therefore somewhat risky, since MathWorks may remove this

functionality without any indication to users.

2For more information, see https://developer.android.com/reference/android/media/MediaRecorder.
AudioSource.html.

3Yair Altman keeps a blog called Undocumented Matlab where he explains how MATLAB callbacks can be implemented in Java, among
other undocumented features: http://www.undocumentedmatlab.com

https://developer.android.com/reference/android/media/MediaRecorder.AudioSource.html
https://developer.android.com/reference/android/media/MediaRecorder.AudioSource.html
http://www.undocumentedmatlab.com

Chapter III. System implementation 18

Despite previously mentioned concerns, it was decided to use Java for this project because MATLAB does

not natively provide non-blocking networking to multiple clients. In Java, the java.nio package developed

by Oracle4 allows multiple simultaneous transmission control protocol (TCP) connections over a single port,

enabling multiple smartphones to connect to the Java program. The connections can then be multiplexed

using selector. The reason TCP was chosen instead of the user datagram protocol (UDP) is the connection-

oriented nature of TCP, which provides guaranteed in-order reception of packets. This simplifies consequent

signal processing, which no longer has to account for possibly missing audio data.

Using a single processing thread would be detrimental to this server application since the application could

then either send/receive data to connected clients or process the received audio. In order to parallelize these

concurrent activities, the Java classes utilized parallelization in the form of java.lang.Thread threads.

One thread is used to perform non-blocking I/O and the other thread is the default MATLAB thread used to

process incoming audio samples.

III.3.1 I/O finite state machine

Since the I/O is non-blocking, several clients (in this case, smartphones) can read and write to the server

simultaneously. Therefore, to facilitate communicating with multiple devices simultaneously, the server ap-

plication represents each client as a finite state machine (FSM). From the server’s point of view, each client is

in one of the following states (see also Fig. 9):

CONFIGURING The client has initiated a connection to the server and the client and server are

currently negotiating settings5.
IDLE The client is connected and fully configured. It is awaiting a start streaming com-

mand to start streaming its audio recordings to the server. Additionally, the set-

tings may be renegotiated to change the state back to CONFIGURING.
STREAMING The client is currently streaming audio to the server. Sending a stop streaming

signal will change the client state to IDLE.

Additionally, because a complete packet sent by a client may arrive as several frames on the server side, each

client can be in one of two reading states:

RECEIVINGDATA This state indicates to the server that the client is somewhere along sending a

packet to the server. The next read frame should be interpreted as a continuation

of the previous frame(s).
IDLE This state indicates the next received frame should be interpreted as the start of

a new packet.

III.3.2 Communication protocol

On top of the TCP interface provided by the Java SocketChannel6, a custom communication protocol be-

tween the MATLAB application and the clients was defined. Each packet starts with one byte identifying its

4Documentation for the NIO package can be found at
https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html

5The negotiated settings are sample rate, block length (number of bytes sent at once) and mono/stereo recording.
6Documentation for the SocketChannel can be found at https://docs.oracle.com/javase/7/docs/api/java/nio/

channels/SocketChannel.html

https://docs.oracle.com/javase/7/docs/api/java/nio/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SocketChannel.html
https://docs.oracle.com/javase/7/docs/api/java/nio/channels/SocketChannel.html

Chapter III. System implementation 19

STREAMCONF IDLE

configuration ACK

received

'start streaming'

received

'stop streaming'

received

reconfiguring

smartphone

Fig. 9. Diagram representing the finite state machine implemented by both the server and the
smartphone application.

type to the recipient. A list of each byte-identifier and packet type in the communication link along with their

content is listed below.

1: SETUP Sent from server to client. Contains 4 bytes specifying the sampling rate to use, 4

bytes containing the block length to use and 1 byte indicating whether to record

in mono or stereo.
2: ACK_SETUP Sent from client to server after receiving SETUP. Contains a string with the hard-

ware (MAC) address of the client preceded by 4 bytes specifying, in bytes, the

length of the string.
3: START_STREAMING Sent from the server to the client, indicating the client should start streaming its

audio recordings to the server. Contains 1 byte specifying which audio source to

use, as explained in section III.2.
4: STOP_STREAMING Sent from the server to the client, indicating the client should cease streaming its

audio recordings to the server. Packet has no content.
5: ACK_STOP Sent from the client to the server to acknowledge it has received the stop packet

and will stop streaming audio. Packet has no content.
6: STREAM_DATA Sent from client to server, contains recorded audio samples. The length of this

packet is block_length ∗ 16 bits (each sample has 16 bit resolution). The block

length is negotiated in the SETUP packet.
7: ORIENTATION_UPDATE Sent from client to server, contains 12 bytes (3 floating point numbers) with mea-

sured azimuth, pitch and roll. A final byte indicates whether the phone is moving7.

III.4 System performance

III.4.1 Android

Despite the lack of real-time guarantees from the Android kernel and the overhead inherent to Java applica-

tions, no performance problems were encountered in the Android data acquisition application.

Unfortunately, the Android AudioRecord API does not make adequate provisions for querying the sup-

ported audio recording settings for a given device. The suggested way of determining whether a given mode

7This byte is not used on the MATLAB side.

Chapter III. System implementation 20

is supported is to attempt to initialize using these settings, and catching any thrown exceptions as well as

detecting whether the resulting object was successfully initialized. Unfortunately, this process is unreliable,

and it was found that while testing, certain phones successfully initialized the AudioRecord object but e.g.

yielded duplicated mono data when a stereo signal was requested, or yielded corrupted data.

In addition, the processing performed for each configurable audio source varies per device. Certain devices

turn on specialized signal processing that negatively affects the beamforming processing, such as automatic

gain control or noise reduction algorithms. Android unfortunately lacks an adequate API for requesting au-

dio sources with a certain amount of processing performed or querying the processing performed for each

audio source. Experimentation showed the voice recognition input (AudioSource.VOICE_RECOGNITION)

generally yielded the least amount of processing, but even this was not guaranteed in all cases.

III.4.2 Server application

Although no attempt was made to quantify the performance of the server application, it can be said that no

problems were encountered with the server application, with up to 6 simultaneous phones streaming their

audio recordings at once. Furthermore, all packets described in section III.3.2 are correctly encoded, decoded

and interpreted. The orientation measurements are passed on to a function translating them into azimuth

and elevation estimates. Recorded audio data is passed on to a buffer structure used in the beamforming

system [14].

One feature of the server implementation is that it does not use any functions specific to MATLAB or Java

(e.g. functions that are not available in other common programming languages). This ensures the applica-

tion may be ported to a different programming language, although performance was found to be adequate

for the purposes of this system. A major advantage of using MATLAB was the ease of interfacing with the

beamforming subsystem, which also runs in MATLAB [14].

For a future, more fully-fledged product, the use of MATLAB should be reconsidered. Performance issues

might arise when more complex operations are performed simultaneously within the server application, and

the interface between MATLAB and Java that was used is not officially supported.

III.5 Orientation measurement

As the beamforming algorithm relies on directivity data that varies with the orientation of the phone, it is

necessary to determine the orientation of each smartphone. As no research was found detailing the accuracy

of smartphone orientation sensors on a table in an office environment, it was deemed necessary to characterize

the accuracy of the orientation sensors in the smartphones in this situation.

The experimental setup is shown in Fig. 10a. A table was set up in an office environment. Three smart-

phones were placed in three locations on the table, two of which were located above the metal leg assembly of

the table. For each location, the smartphones were placed in the same orientation by aligning them with the

edges of the table. Every second, the orientation of each phone was computed based on its internal sensors,

in the manner described in section III.2. Next, this data was transmitted to a computer running the server

application described in section III.3. This orientation was logged for 30 minutes per run, after which the

phones were switched to another of the three locations. The experiment was repeated three times to acquire

data for each phone in each position.

Chapter III. System implementation 21

Representative results for the computed azimuth are shown in Fig. 10b. The reported azimuths are rea-

sonably constant over the measurement interval but individual computed azimuths already vary by over 20

degrees. Full results may be found in Fig. 12 in Appendix A.I. A discussion of the results may be found in

section V.1.2.

1 2 3

(a) Schematic representation of the measurement setup used
for orientation measurements. The figure shows the top
view of a table with measurement locations indicated by
the numbers. The grey area indicates the location of
metal support bars of the table.

(b) Azimuth angles for location 1.

Fig. 10. Measurement setup for orientation estimation and azimuth angles from three smart-
phones. The azimuth is quite constant, but a large offset is present between different
sensor readings at the same location. Full results for all smartphones and locations can
be found in Fig. 12 in Appendix A.I.

Chapter III. System implementation 22

23

Chapter IV

System test

In order to evaluate the performance of the complete system, an experiment was devised to quantify the error

in synchronization between different smartphones. This chapter describes the experimental setup and results.

IV.1 Set-up

The setup for the experiment is shown in Fig. 11a: two smartphones are placed on a table in a room repre-

sentative of a reverberant office environment. A loudspeaker was also placed in the room, acting as a source

of the synchronization signal and an additional background signal. The placement of the loudspeaker, l1, was

chosen such that smartphones m1, m2 were equally spaced (within measurement error) from speaker l1.

To perform an experiment, the smartphones were first placed in the STREAMING state using the MATLAB

server application. Next, a background signal (silence, voice or music) was played over speaker l1. After

several seconds, the beacon signal (see also section II.4.1) was played, and the time-domain synchronization

algorithm (described in section II.4) was invoked on the audio recordings transmitted to the MATLAB appli-

cation up to that point. Recording was continued for approximately ten seconds after the pulse, then halted

by sending a STOP_STREAMING packet to both smartphones.

This experiment was repeated for three background signals (silence, voice and music) and two amplitudes

of the beacon signal (100% and 20% of full scale, respectively). For both beacon signal amplitudes, the

amplitude of the background signal was left at the same level.

IV.1.1 Expected results

Based on the simulation data described in section II.5, the recordings on m1 and m2 played from l1 are

expected to be synchronized within one sample of one another. However, error in the placement of the

loudspeaker and smartphones causes an unknown arrival time difference that contributes linearly to the

synchronization error. For example, if the accuracy of placement of the smartphones and loudspeakers is

∆d = ±1 cm, the maximum synchronization error ε is

ε= ± fs
4∆d

v
= ±48 · 103 0.04

343
= ±5.6 samples

with v = 343 m/s the speed of sound in air and fs = 48 kHz the used sampling frequency.

Chapter IV. System test 24

Furthermore, an error in the speed of sound leads to a TO mismatch linear with the TDOA error. For

example, let the expected TDOA be 10 ms, (corresponding to a distance of approximately 3.4 m) and let the

error in speed of sound be 1%. Then, the actual TDOA lies between 9.9 and 10.1 ms. This 0.2 ms margin

leads to a margin of 9.6 samples. TDOA compensation is not performed in this experiment.

Based on the above remarks, it is expected that the synchronization will be up to 15 samples off, assuming

a 1 cm error in position per smartphone and loudspeaker and perfect synchronization algorithm. It is also

expected that playing the beacon signal at a higher volume will yield a lower error, as the ratio of the beacon

amplitude to the background amplitude is higher.

IV.2 Results

Results of the system test are shown in Fig. 11b. It can be seen that contrary to the expected results, the

algorithm performed better (with errors of 5 and 6 samples) in the low-volume case than in the high-volume

case (where the synchronization error was 26 samples). Further discussion of these results may be found in

section V.1.4.

m1

l1

m2

d2

d1

(a) An overview of the system test setup.

Description of background noise Error [samples]
Silence 26

Voice 26

Voice (low MLS volume) 5

Music (low MLS volume) 6

(b) Synchronization error for different scenarios.

Fig. 11. Measurement results for real-life synchronization tests. Fig. 11a shows the set-up.

25

Chapter V

Discussion and recommendations

This chapter contains a discussion of the various results obtained in this work, followed by a number of

suggestions to improve the various aspects of the system, as a basis for future research. Finally, an overarching

conclusion is given regarding the presented results.

V.1 Discussion

V.1.1 SRO measurements

A measurement of the sample rate offset (SRO) present in the smartphone was performed. This test is de-

scribed in section II.3. Complete results are shown in Fig. 14 in Appendix A.

The effect of sampling rate offset on the audio recordings is quite evident. After an hour of recording – a

typical time for a conference call – the phones with the most diverging SRO (phone 2 and 3 in Fig. 6a) will

have drifted apart by an order of 60 · 60 · 0.2= 720 samples.

The need for resampling is more pronounced than expected and should be compensated in future work.

Alternatively, more frequent time-offset correction could be applied. The disadvantage of this approach is

that periodic playback of the beacon signal (section II.4.1) could be considered unpleasant. Furthermore,

using current smartphone microphone directivities, ultrasonic synchronization beacons are not realistic since

the responses of the microphones are near zero at these frequencies.

V.1.2 Orientation measurement

As described in section III.5, the orientation of the smartphones was computed over a period of time to

determine the accuracy and stability of these estimates. Results for this rest are shown in Appendix A, Fig. 12.

It can be seen that the orientation estimation problem is exacerbated for all different positions on the

table. It is hypothesized that this is due to the difference in metal content near the smartphone, as well as

the variable magnetic environment in an indoor environment in general. As the offset for each smartphone

is different for each different position, it is expected that this cannot be reliably accounted for by processing

the sensor signals.

The pitch and roll angles (Figs. 12d and 12g), defined in Appendix B, show similar offset between phones,

but on a different scale. Pitch offset is on the order of 1 degree and roll offset on the order of 0.5 degree.

These measurements are more usable for orientation estimation applied to beamforming, but further filtering

may be used to compensate for the measured noise levels [13].

Chapter V. Discussion and recommendations 26

V.1.3 TO simulation

In section II.5, a simulated experiment was performed to characterise the performance of the proposed syn-

chronization algorithms in a variety of different scenarios. The results of this simulation can be found in

Appendix A, Fig. 13.

In Fig. 7a, the root-mean-square (RMS) error over a number of runs is plotted as a function of the different

reflection coefficients used in the simulation. This plot was made for a simulated SNR of 60 dB and a delay

of 0.1 s. It can be seen that the reflection coefficient has no influence on the performance of the time-domain

algorithm. The effect on the frequency-domain algorithm is similarly small, until the reflection coefficient

reaches a value of about 0.8. At this point, the amplitude of the initial peak is about 2.8 times the amplitude

of the largest reflection and the least-squares fit in the frequency domain no longer finds the true delay. It

is hypothesized that this performance degradation occurs because, as described in II.4.1, for this algorithm

it is assumed that the phase contribution of the acoustic impulse response is low compared to the phase

contribution of the delay.

Fig. 13c shows the RMS error over N runs versus the delay that was inserted in the simulation. This plot

was made at a simulated signal-to-noise-ratio of 60 dB and a wall reflection coefficient of 0. In this case, it

can be seen that the error is limited to within one sample, showing that while the algorithm does not perform

with sub-sample accuracy, in an idealized scenario it performs with error close to this one-sample limit.

Finally, Fig. 7b shows the RMS error as a function of the standard deviation of the added Gaussian noise.

The frequency-domain algorithm quickly gains a large error as the noise power increases. In contrast, the

error of the time-domain estimator only starts to increase around a noise variance of 20 – as the variance in

the original pulse is 1, this is equivalent to a signal-to-noise ratio of −26 dB. It is not expected that such low

signal-to-noise ratios will be encountered during normal system operation.

V.1.4 System test

A test of the entire subsystem was performed in order to test the synchronization algorithm in a more realistic

scenario. This test is described in chapter IV. The results of this test are shown in table 11b of that chapter.

The magnitude of the error was close to the expected results. However, while it was expected that a

quieter beacon would yield a higher error, the results indicate that the algorithm performs better (showing

a synchronization error of approximately 5 samples instead of 26 samples) when the beacon signal is played

back at 20% of full scale. It is hypothesized that this is due to distortion occurring in the signal path at full-

scale playback, yielding a distorted pulse that does not match the intended reference signal. When the signal

is later correlated with this intended reference signal, the performance is degraded.

As such, it is recommended that future tests of this system account for the effect of distortion on the pulse

signal.

V.2 Future work

In light of the results presented here, there are a variety of possible future projects that could be based on this

work.

First of all, the Java server application and MATLAB signal processing are not yet optimized for perfor-

mance. As such, they could be reimplemented in for example the C programming language to run natively

on the host computer. This would likely improve the power efficiency of the software, as well as facilitating

a real-time reimplementation of the beamforming system described by Van Wijngaarden and Wouters [14].

Chapter V. Discussion and recommendations 27

In addition, while it was decided not to compensate for sample rate offset in this work, such compensation

could be integrated in the system to evaluate performance gains.

It may be worth evaluating the merit of cross correlating the different smartphone microphone signals

instead of correlating each signal with a known reference. The advantage of this is that in this case, it may be

possible to use arbitrary audio as a synchronization reference instead of a predetermined beacon signal. The

disadvantage is the increased complexity caused by the unknown correlation properties of arbitrary audio.

It was also shown that the orientation sensing features present in the Android application programming

interface were not suitable for our assumed usage scenario. As such, further research into these sensor tech-

nologies, signal processing algorithms to improve their precision, and alternative methods of orientation

estimation are warranted.

As the smartphone locations were presumed known, another avenue for improvement lies in integrating

existing audio-based localization algorithms [8] into the system.

Finally, the need for a centralized processing server could be avoided by instead implementing a set of

algorithms on the smartphones which, using message passing, distributes the processing over the smartphones

themselves. This approach, however, would require a significantly different architecture from the model

presented in this work.

V.3 Conclusion

A time offset compensation system was designed and implemented on smartphones and in MATLAB with

application to beamforming. Two strategies for time offset compensation were implemented: one based on

time-domain cross correlation and a maximum search, the other based on frequency-domain cross correlation

and least-squares estimation.

A simulation was made to evaluate these algorithms, showing that the potential of the frequency-domain

method for sub-sample accuracy was not realized and the time-domain method was more robust in highly

noisy or reverberant situations. Real-life experiments show a synchronization offset of 5 to 6 samples for the

time-domain algorithm.

Orientation measurements obtained from Android smartphones were shown to be unsuitable for use in

this work. On a table in an office environment, the reported orientations were found to be inconsistent both

between different devices and between the same device in different locations.

In addition, the sampling rate offset of Nexus 5 phones was characterized and found to be on the order

of 10 mHz. Based on this result, it was decided not to implement a compensation algorithm in this work.

The Android platform was used extensively to record audio, but it was found to lack adequate provi-

sions to query the supported audio recording settings of a device. Further, it is difficult to obtain raw audio

recordings for use in signal processing, as the amount of preprocessing done on the microphone signal is

device-dependent and opaque.

28

Bibliography

[1] B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to spatial filtering.” IEEE ASSP
magazine, vol. 5, no. 2, pp. 4–24, 1988.

[2] N. Gaubitch, J. Martinez, W. Kleijn, and R. Heusdens, “On near-field beamforming with smartphone-
based ad-hoc microphone arrays,” in Acoustic Signal Enhancement (IWAENC), 2014 14th International
Workshop on, Sept 2014, pp. 94–98.

[3] M. R. P. Thomas, J. Ahrens, and I. Tashev, “Optimal 3d beamforming using measured microphone direc-
tivity patterns,” in Acoustic Signal Enhancement; Proceedings of IWAENC 2012; International Workshop
on, Sept 2012, pp. 1–4.

[4] D. Ba, D. Florencio, and C. Zhang, “Enhanced mvdr beamforming for arrays of directional microphones,”
in Multimedia and Expo, 2007 IEEE International Conference on, July 2007, pp. 1307–1310.

[5] I. Himawan, I. McCowan, and S. Sridharan, “Clustered blind beamforming from ad-hoc microphone
arrays,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. 19, no. 4, pp. 661–676, May
2011.

[6] M. Parviainen, P. Pertila, and M. Hamalainen, “Self-localization of wireless acoustic sensors in meeting
rooms,” in Hands-free Speech Communication and Microphone Arrays (HSCMA), 2014 4th Joint Workshop
on, May 2014, pp. 152–156.

[7] S. Markovich-Golan, S. Gannot, and I. Cohen, “Blind sampling rate offset estimation and compensation
in wireless acoustic sensor networks with application to beamforming,” in Acoustic Signal Enhancement;
Proceedings of IWAENC 2012; International Workshop on, Sept 2012, pp. 1–4.

[8] M. Hennecke and G. Fink, “Towards acoustic self-localization of ad hoc smartphone arrays,” in Hands-
free Speech Communication and Microphone Arrays (HSCMA), 2011 Joint Workshop on, May 2011, pp.
127–132.

[9] V. Raykar, R. Lienhart, and I. Kozintsev, “Method for three-dimensional position calibration of audio
sensors and actuators on a distributed computing platform,” Sep. 6 2005, US Patent 6,941,246.
[Online]. Available: http://www.google.com/patents/US6941246

[10] C. H. Knapp and G. Carter, “Generalized correlation method for estimation of time delay.” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. ASSP-24, pp. 320–327, 1976.

[11] S. Wehr, I. Kozintsev, R. Lienhart, and W. Kellermann, “Synchronization of acoustic sensors for dis-
tributed ad-hoc audio networks and its use for blind source separation,” in Multimedia Software Engi-
neering, 2004. Proceedings. IEEE Sixth International Symposium on, Dec 2004, pp. 18–25.

[12] D. Cherkassky and S. Gannot, “Blind synchronization in wireless sensor networks with application to
speech enhancement,” in Acoustic Signal Enhancement (IWAENC), 2014 14th International Workshop on.
IEEE, 2014, pp. 183–187.

[13] J. Goslinski, M. Nowicki, and P. Skrzypczynski, “Performance comparison of EKF-based algorithms for
orientation estimation on Android platform,” Sensors Journal, IEEE, vol. PP, no. 99, pp. 1–1, 2015.

http://www.google.com/patents/US6941246

Bibliography 29

[14] N. van Wijngaarden and E. Wouters, “Acoustic Enhancement via Beamforming Using Smartphones,”
Bachelor’s Thesis, Delft University of Technology, June 2015.

[15] R. Brinkman and T. de Rooij, “On Determining Smartphone Microphone Directivity with Application to
Beamforming,” Bachelor’s Thesis, Delft University of Technology, June 2015.

[16] S. Lasassmeh and J. Conrad, “Time synchronization in wireless sensor networks: A survey,” in IEEE
SoutheastCon 2010 (SoutheastCon), Proceedings of the, March 2010, pp. 242–245.

[17] M. Pawig, G. Enzner, and P. Vary, “Adaptive sampling rate correction for acoustic echo control in voice-
over-ip,” Signal Processing, IEEE Transactions on, vol. 58, no. 1, pp. 189–199, Jan 2010.

[18] A. Ballew, A. Kuzmanovic, and C. C. Lee, “Fusion of live audio recordings for blind noise reduction,” in
Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, July 2011, pp.
1–7.

[19] J. G. Proakis and D. G. Manolakis, Digital Signal Processing. Pearson Education, 2007.

[20] W. Chu, “Impulse-response and reverberation-decay measurements made by using a periodic pseudo-
random sequence,” Applied Acoustics, vol. 29, no. 3, pp. 193 – 205, 1990.

[21] F. MacWilliams and N. Sloane, “Pseudo-random sequences and arrays,” Proceedings of the IEEE, vol. 64,
no. 12, pp. 1715–1729, Dec 1976.

[22] B. Girod, R. Rabenstein, and A. Stenger, Signals and Systems. Wiley, 2001.

[23] G.-B. Stan, J.-J. Embrechts, and D. Archambeau, “Comparison of different impulse response measure-
ment techniques,” AES: Journal of the Audio Engineering Society, vol. 50, no. 4, pp. 249–262, 2002.

[24] E. W. Hansen, Fourier Transforms: Principles and Applications. Wiley, 2014.

[25] International Data Corporation. Smartphone OS market share 2015, 2014, 2013, and 2012. [Online].
Available: https://www.idc.com/prodserv/smartphone-os-market-share.jsp

[26] C. Maia, L. Nogueira, and L. M. Pinho, “Evaluating Android OS for embedded real-time systems,” Pro-
ceedings of the 6th International Workshop on Operating Systems Platforms for Embedded Real-Time Ap-
plications.

[27] Google. Getting Started – Android Developers. [Online]. Available: https://developer.android.com/
training/index.html

[28] ——. Android NDK – Android Developers. [Online]. Available: https://developer.android.com/tools/
sdk/ndk/index.html

[29] F. Liu, Android Native Development Kit Cookbook. Packt Publishing, 2013.

[30] A. Varshavsky, M. Chen, E. de Lara, J. Froehlich, D. Haehnel, J. Hightower, A. Lamarca, F. Potter, T. Sohn,
K. Tang, and I. Smith, “Are GSM phones the solution for localization?” in Mobile Computing Systems and
Applications, 2006. WMCSA ’06. Proceedings. 7th IEEE Workshop on, Aug 2006, pp. 34–42.

[31] S. Brahler. (2010, Oct.) Analysis of the Android architecture. [Online]. Available: https:
//os.itec.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf

https://www.idc.com/prodserv/smartphone-os-market-share.jsp
https://developer.android.com/training/index.html
https://developer.android.com/training/index.html
https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/tools/sdk/ndk/index.html
https://os.itec.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf
https://os.itec.kit.edu/downloads/sa_2010_braehler-stefan_android-architecture.pdf

30

Appendix A

Full simulation and experiment results
A.I Orientation measurements

(a) Azimuth angles for location 1. (b) Azimuth angles for location 2. (c) Azimuth angles for location 3.

(d) Pitch angles for location 1. (e) Pitch angles for location 2. (f) Pitch angles for location 3.

(g) Roll angles for location 1. (h) Roll angles for location 2. (i) Roll angles for location 3.

Fig. 12. Complete measurement results for all orientation measurements performed.

Appendix A. Full simulation and experiment results 31

A.II Time offset simulation

(a) Delay estimation error as a function of wall reflection. (b) Delay estimation error as a function of noise power

(c) Delay estimation error as a function of inserted delay

Fig. 13. Simulated results for TD and FD synchronization algorithm. The time-domain algorithm
performs better under nearly all circumstances.

Appendix A. Full simulation and experiment results 32

A.III Sampling rate offset measurements

(a) 30 second FFT window, ∆ f = 3.3 mHz. (b) One minute FFT window, ∆ f = 6.6 mHz

(c) 2 minute FFT window, ∆ f = 13.2 mHz. (d) 3 minute FFT window, ∆ f = 19.8 mHz.

(e) 4 minute FFT window, ∆ f = 26.4 mHz. (f) 5 minute FFT window, ∆ f = 33 mHz.

Fig. 14. Sampling rate offset measurements for different FFT window lengths. A larger FFT win-
dow gives a higher frequency resolution ∆ f but lower time resolution.

Appendix A. Full simulation and experiment results 33

A.IV Real-life synchronization results

(a) Unsynchronized smartphone audio. (b) Synchronized smartphone audio.

Fig. 15. Before (15a) and after synchronization (15b) of received audio in a real-life scenario.
This is analogous to Figs. 3a-3b. The recordings correspond to the “Music (low MLS
volume)” measurement in table 11b.

34

Appendix B

Global coordinate system used by
smartphone

Fig. 16. The global coordinate system used for the smartphones in this work.

	List of figures
	Introduction
	Problem formulation
	Definitions and symbols
	Requirements

	Synchronization
	Problem formulation
	State of the art
	SRO characterization
	Algorithm
	Simulation

	System implementation
	State of the art
	Android app
	MATLAB implementation
	System performance
	Orientation measurement

	System test
	Set-up
	Results

	Discussion and recommendations
	Discussion
	Future work
	Conclusion

	Bibliography
	Full simulation and experiment results
	Orientation measurements
	Time offset simulation
	Sampling rate offset measurements
	Real-life synchronization results

	Global coordinate system used by smartphone

